Subequivariant Reinforcement Learning in 3D Multi-Entity Physical Environments
- URL: http://arxiv.org/abs/2407.12505v1
- Date: Wed, 17 Jul 2024 11:37:34 GMT
- Title: Subequivariant Reinforcement Learning in 3D Multi-Entity Physical Environments
- Authors: Runfa Chen, Ling Wang, Yu Du, Tianrui Xue, Fuchun Sun, Jianwei Zhang, Wenbing Huang,
- Abstract summary: This paper proposes Subequivariant Hierarchical Neural Networks (SHNN) to facilitate multi-entity policy learning.
SHNN first dynamically decouples the global space into local entity-level graphs via task assignment.
It then leverages subequivariant message passing over the local entity-level graphs to devise local reference frames.
- Score: 31.437047774153037
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning policies for multi-entity systems in 3D environments is far more complicated against single-entity scenarios, due to the exponential expansion of the global state space as the number of entities increases. One potential solution of alleviating the exponential complexity is dividing the global space into independent local views that are invariant to transformations including translations and rotations. To this end, this paper proposes Subequivariant Hierarchical Neural Networks (SHNN) to facilitate multi-entity policy learning. In particular, SHNN first dynamically decouples the global space into local entity-level graphs via task assignment. Second, it leverages subequivariant message passing over the local entity-level graphs to devise local reference frames, remarkably compressing the representation redundancy, particularly in gravity-affected environments. Furthermore, to overcome the limitations of existing benchmarks in capturing the subtleties of multi-entity systems under the Euclidean symmetry, we propose the Multi-entity Benchmark (MEBEN), a new suite of environments tailored for exploring a wide range of multi-entity reinforcement learning. Extensive experiments demonstrate significant advancements of SHNN on the proposed benchmarks compared to existing methods. Comprehensive ablations are conducted to verify the indispensability of task assignment and subequivariance.
Related papers
- Deep Modularity Networks with Diversity--Preserving Regularization [4.659251704980846]
We propose Deep Modularity Networks with Diversity-Preserving Regularization (DMoN-DPR), which introduces three novel regularization terms: distance-based for inter-cluster separation, variance-based for intra-cluster diversity, and entropy-based for balanced assignments.
Our method enhances clustering performance on benchmark datasets, achieving significant improvements in Normalized Mutual Information (NMI), and F1 scores.
These results demonstrate the effectiveness of incorporating diversity-preserving regularizations in creating meaningful and interpretable clusters, especially in feature-rich datasets.
arXiv Detail & Related papers (2025-01-23T08:05:59Z) - Spatial Semantic Recurrent Mining for Referring Image Segmentation [63.34997546393106]
We propose Stextsuperscript2RM to achieve high-quality cross-modality fusion.
It follows a working strategy of trilogy: distributing language feature, spatial semantic recurrent coparsing, and parsed-semantic balancing.
Our proposed method performs favorably against other state-of-the-art algorithms.
arXiv Detail & Related papers (2024-05-15T00:17:48Z) - Equivariant Local Reference Frames for Unsupervised Non-rigid Point Cloud Shape Correspondence [29.58888279920068]
We introduce EquiShape, a novel structure tailored to learn pair-wise LRFs with global structural cues for both spatial and semantic consistency.
We also present LRF-Refine, an optimization strategy generally applicable to LRF-based methods.
Our overall framework surpasses the state-of-the-art methods by a large margin on three benchmarks.
arXiv Detail & Related papers (2024-04-01T06:59:56Z) - DCN-T: Dual Context Network with Transformer for Hyperspectral Image
Classification [109.09061514799413]
Hyperspectral image (HSI) classification is challenging due to spatial variability caused by complex imaging conditions.
We propose a tri-spectral image generation pipeline that transforms HSI into high-quality tri-spectral images.
Our proposed method outperforms state-of-the-art methods for HSI classification.
arXiv Detail & Related papers (2023-04-19T18:32:52Z) - DuAT: Dual-Aggregation Transformer Network for Medical Image
Segmentation [21.717520350930705]
Transformer-based models have been widely demonstrated to be successful in computer vision tasks.
However, they are often dominated by features of large patterns leading to the loss of local details.
We propose a Dual-Aggregation Transformer Network called DuAT, which is characterized by two innovative designs.
Our proposed model outperforms state-of-the-art methods in the segmentation of skin lesion images, and polyps in colonoscopy images.
arXiv Detail & Related papers (2022-12-21T07:54:02Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
This paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD)
The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions.
Experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-30T03:37:50Z) - Learning to Aggregate Multi-Scale Context for Instance Segmentation in
Remote Sensing Images [28.560068780733342]
A novel context aggregation network (CATNet) is proposed to improve the feature extraction process.
The proposed model exploits three lightweight plug-and-play modules, namely dense feature pyramid network (DenseFPN), spatial context pyramid ( SCP), and hierarchical region of interest extractor (HRoIE)
arXiv Detail & Related papers (2021-11-22T08:55:25Z) - HS3: Learning with Proper Task Complexity in Hierarchically Supervised
Semantic Segmentation [81.87943324048756]
We propose Hierarchically Supervised Semantic (HS3), a training scheme that supervises intermediate layers in a segmentation network to learn meaningful representations by varying task complexity.
Our proposed HS3-Fuse framework further improves segmentation predictions and achieves state-of-the-art results on two large segmentation benchmarks: NYUD-v2 and Cityscapes.
arXiv Detail & Related papers (2021-11-03T16:33:29Z) - G$^2$DA: Geometry-Guided Dual-Alignment Learning for RGB-Infrared Person
Re-Identification [3.909938091041451]
RGB-IR person re-identification aims to retrieve person-of-interest between heterogeneous modalities.
This paper presents a Geometry-Guided Dual-Alignment learning framework (G$2$DA) to tackle sample-level modality difference.
arXiv Detail & Related papers (2021-06-15T03:14:31Z) - A Unified Theory of Decentralized SGD with Changing Topology and Local
Updates [70.9701218475002]
We introduce a unified convergence analysis of decentralized communication methods.
We derive universal convergence rates for several applications.
Our proofs rely on weak assumptions.
arXiv Detail & Related papers (2020-03-23T17:49:15Z) - Universal-RCNN: Universal Object Detector via Transferable Graph R-CNN [117.80737222754306]
We present a novel universal object detector called Universal-RCNN.
We first generate a global semantic pool by integrating all high-level semantic representation of all the categories.
An Intra-Domain Reasoning Module learns and propagates the sparse graph representation within one dataset guided by a spatial-aware GCN.
arXiv Detail & Related papers (2020-02-18T07:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.