Adaptive Few-Shot Learning (AFSL): Tackling Data Scarcity with Stability, Robustness, and Versatility
- URL: http://arxiv.org/abs/2501.13479v1
- Date: Thu, 23 Jan 2025 08:51:49 GMT
- Title: Adaptive Few-Shot Learning (AFSL): Tackling Data Scarcity with Stability, Robustness, and Versatility
- Authors: Rishabh Agrawal,
- Abstract summary: Few-shot learning enables machine learning models to generalize effectively with minimal labeled data.
This paper introduces Adaptive Few-Shot Learning, a framework that integrates meta-learning, domain alignment, noise resilience, and multi-modal integration.
- Score: 3.5897534810405403
- License:
- Abstract: Few-shot learning (FSL) enables machine learning models to generalize effectively with minimal labeled data, making it crucial for data-scarce domains such as healthcare, robotics, and natural language processing. Despite its potential, FSL faces challenges including sensitivity to initialization, difficulty in adapting to diverse domains, and vulnerability to noisy datasets. To address these issues, this paper introduces Adaptive Few-Shot Learning (AFSL), a framework that integrates advancements in meta-learning, domain alignment, noise resilience, and multi-modal integration. AFSL consists of four key modules: a Dynamic Stability Module for performance consistency, a Contextual Domain Alignment Module for domain adaptation, a Noise-Adaptive Resilience Module for handling noisy data, and a Multi-Modal Fusion Module for integrating diverse modalities. This work also explores strategies such as task-aware data augmentation, semi-supervised learning, and explainable AI techniques to enhance the applicability and robustness of FSL. AFSL provides scalable, reliable, and impactful solutions for real-world, high-stakes domains.
Related papers
- Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
We develop a specialized dataset aimed at enhancing the evaluation and fine-tuning of large language models (LLMs) for wireless communication applications.
The dataset includes a diverse set of multi-hop questions, including true/false and multiple-choice types, spanning varying difficulty levels from easy to hard.
We introduce a Pointwise V-Information (PVI) based fine-tuning method, providing a detailed theoretical analysis and justification for its use in quantifying the information content of training data.
arXiv Detail & Related papers (2025-01-16T16:19:53Z) - A Text-Based Knowledge-Embedded Soft Sensing Modeling Approach for General Industrial Process Tasks Based on Large Language Model [16.842988666530204]
Data-driven soft sensors (DDSS) have become mainstream methods for predicting key performance indicators in process industries.
Development requires complex and costly customized designs tailored to various tasks during the modeling process.
We propose a general framework named LLM-TKESS (large language model for text-based knowledge-embedded soft sensing) for enhanced soft sensing modeling.
arXiv Detail & Related papers (2025-01-09T08:59:14Z) - Dynamic Adaptive Optimization for Effective Sentiment Analysis Fine-Tuning on Large Language Models [0.0]
Large language models (LLMs) have become a popular paradigm for sentiment analysis, leveraging multi-task learning to address specific tasks concurrently.
We propose a novel multi-task learning framework with a dynamic adaptive optimization (DAO) module.
This work improves the Mean Squared Error (MSE) and Accuracy (ACC) by 15.58% and 1.24% respectively, compared with previous work.
arXiv Detail & Related papers (2024-08-15T19:13:38Z) - Empowering Source-Free Domain Adaptation with MLLM-driven Curriculum Learning [5.599218556731767]
Source-Free Domain Adaptation (SFDA) aims to adapt a pre-trained source model to a target domain using only unlabeled target data.
Reliability-based Curriculum Learning (RCL) integrates multiple MLLMs for knowledge exploitation via pseudo-labeling in SFDA.
arXiv Detail & Related papers (2024-05-28T17:18:17Z) - Modality Prompts for Arbitrary Modality Salient Object Detection [57.610000247519196]
This paper delves into the task of arbitrary modality salient object detection (AM SOD)
It aims to detect salient objects from arbitrary modalities, eg RGB images, RGB-D images, and RGB-D-T images.
A novel modality-adaptive Transformer (MAT) will be proposed to investigate two fundamental challenges of AM SOD.
arXiv Detail & Related papers (2024-05-06T11:02:02Z) - Personalized Wireless Federated Learning for Large Language Models [75.22457544349668]
Large Language Models (LLMs) have revolutionized natural language processing tasks.
Their deployment in wireless networks still face challenges, i.e., a lack of privacy and security protection mechanisms.
We introduce two personalized wireless federated fine-tuning methods with low communication overhead.
arXiv Detail & Related papers (2024-04-20T02:30:21Z) - Empowering Federated Learning for Massive Models with NVIDIA FLARE [15.732926323081077]
handling and leveraging data effectively has become a critical challenge.
Most state-of-the-art machine learning algorithms are data-centric.
In this paper, we explore how federated learning enabled by NVIDIA FLARE can address these challenges.
arXiv Detail & Related papers (2024-02-12T16:59:05Z) - SAPT: A Shared Attention Framework for Parameter-Efficient Continual Learning of Large Language Models [71.78800549517298]
Continual learning (CL) ability is vital for deploying large language models (LLMs) in the dynamic world.
Existing methods devise the learning module to acquire task-specific knowledge with parameter-efficient tuning (PET) block and the selection module to pick out the corresponding one for the testing input.
We propose a novel Shared Attention Framework (SAPT) to align the PET learning and selection via the Shared Attentive Learning & Selection module.
arXiv Detail & Related papers (2024-01-16T11:45:03Z) - Personalized Federated Learning with Contextual Modulation and
Meta-Learning [2.7716102039510564]
Federated learning has emerged as a promising approach for training machine learning models on decentralized data sources.
We propose a novel framework that combines federated learning with meta-learning techniques to enhance both efficiency and generalization capabilities.
arXiv Detail & Related papers (2023-12-23T08:18:22Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
Federated learning (FL) offers a solution to train a global machine learning model.
FL suffers performance degradation when client data distribution is non-IID.
We propose a new adaptive training algorithm $textttAdaFL$ to combat this degradation.
arXiv Detail & Related papers (2021-08-12T14:18:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.