論文の概要: ReasVQA: Advancing VideoQA with Imperfect Reasoning Process
- arxiv url: http://arxiv.org/abs/2501.13536v1
- Date: Thu, 23 Jan 2025 10:35:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:59:23.977376
- Title: ReasVQA: Advancing VideoQA with Imperfect Reasoning Process
- Title(参考訳): ReasVQA:不完全な推論プロセスによるビデオQAの改善
- Authors: Jianxin Liang, Xiaojun Meng, Huishuai Zhang, Yueqian Wang, Jiansheng Wei, Dongyan Zhao,
- Abstract要約: textbfReasVQA (Reasoning-enhanced Video Question Answering) は、MLLM(Multimodal Large Language Models)が生成する推論プロセスを活用して、ビデオQAモデルの性能を向上させる新しい手法である。
NExT-QAでは+2.9、STARでは+7.3、IntentQAでは+5.9が大幅に改善された。
- 参考スコア(独自算出の注目度): 38.4638171723351
- License:
- Abstract: Video Question Answering (VideoQA) is a challenging task that requires understanding complex visual and temporal relationships within videos to answer questions accurately. In this work, we introduce \textbf{ReasVQA} (Reasoning-enhanced Video Question Answering), a novel approach that leverages reasoning processes generated by Multimodal Large Language Models (MLLMs) to improve the performance of VideoQA models. Our approach consists of three phases: reasoning generation, reasoning refinement, and learning from reasoning. First, we generate detailed reasoning processes using additional MLLMs, and second refine them via a filtering step to ensure data quality. Finally, we use the reasoning data, which might be in an imperfect form, to guide the VideoQA model via multi-task learning, on how to interpret and answer questions based on a given video. We evaluate ReasVQA on three popular benchmarks, and our results establish new state-of-the-art performance with significant improvements of +2.9 on NExT-QA, +7.3 on STAR, and +5.9 on IntentQA. Our findings demonstrate the supervising benefits of integrating reasoning processes into VideoQA. Further studies validate each component of our method, also with different backbones and MLLMs, and again highlight the advantages of this simple but effective method. We offer a new perspective on enhancing VideoQA performance by utilizing advanced reasoning techniques, setting a new benchmark in this research field.
- Abstract(参考訳): ビデオ質問回答(Video Question Answering, VideoQA)は、質問に正確に答えるために、ビデオ内の複雑な視覚的および時間的関係を理解することを必要とする課題である。
本稿では,MLLM(Multimodal Large Language Models)が生成する推論プロセスを活用して,ビデオQAモデルの性能を向上させる新しい手法である「textbf{ReasVQA} (Reasoning-enhanced Video Question Answering)」を紹介する。
私たちのアプローチは、推論生成、推論の洗練、推論からの学習という3つのフェーズで構成されています。
まず、追加のMLLMを用いて詳細な推論プロセスを生成し、第2に、データ品質を保証するためのフィルタリングステップによってそれらを精査する。
最後に、不完全かもしれない推論データを用いて、マルチタスク学習を通じて、与えられたビデオに基づいて質問を解釈し答える方法について、ビデオQAモデルをガイドする。
NExT-QAでは+2.9、STARでは+7.3、IntentQAでは+5.9が大幅に改善された。
以上の結果から,ビデオQAに推論処理を組み込むことの利点が示唆された。
さらに, 背骨とMLLMの異なる各成分についても検討し, この簡便で効果的な手法の利点を浮き彫りにしている。
本稿では,先進的な推論技術を活用することで,ビデオQAの性能向上に対する新たな視点を提供し,この研究分野に新たなベンチマークを設置する。
関連論文リスト
- VideoEspresso: A Large-Scale Chain-of-Thought Dataset for Fine-Grained Video Reasoning via Core Frame Selection [61.54044967253421]
空間的詳細と時間的コヒーレンスを保持するビデオQAペアを特徴とする,新しいデータセットであるVideoEspressoを紹介する。
GPT-4o を用いた QA ペア生成にあたり, 冗長性を抑えるためにセマンティック・アウェア法を用いて構成パイプラインを構築した。
フレームセレクタと2段階の命令微調整推論LVLMを備えたハイブリッドLVLM協調フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-22T08:33:36Z) - VQA$^2$: Visual Question Answering for Video Quality Assessment [76.81110038738699]
ビデオ品質アセスメント(VQA)は、低レベルの視覚知覚において古典的な分野である。
画像領域における最近の研究は、視覚質問応答(VQA)が視覚的品質を著しく低レベルに評価できることを示した。
VQA2インストラクションデータセットは,ビデオ品質評価に焦点をあてた最初の視覚的質問応答インストラクションデータセットである。
VQA2シリーズは、ビデオにおける空間的時間的品質の詳細の知覚を高めるために、視覚的および運動的トークンをインターリーブする。
論文 参考訳(メタデータ) (2024-11-06T09:39:52Z) - LMM-VQA: Advancing Video Quality Assessment with Large Multimodal Models [53.64461404882853]
ビデオ品質評価(VQA)アルゴリズムは、ストリーミングビデオの品質を監視し最適化するために必要である。
本稿では,LMM-VQA(Large Multi-Modal Video Quality Assessment)モデルを提案する。
論文 参考訳(メタデータ) (2024-08-26T04:29:52Z) - VURF: A General-purpose Reasoning and Self-refinement Framework for Video Understanding [65.12464615430036]
本稿では,Large Language Models (LLM) の推論能力に基づくビデオ理解・推論フレームワーク (VURF) を提案する。
ビデオタスクの文脈でLLMの実用性を拡張するための新しいアプローチである。
我々は,その文脈学習能力を利用して,映像理解のための実行可能な視覚プログラムを生成する。
論文 参考訳(メタデータ) (2024-03-21T18:00:00Z) - Grounded Question-Answering in Long Egocentric Videos [39.281013854331285]
長い、エゴセントリックなビデオで、個人やロボットが自分の過去の視覚的体験について尋ねることができる。
このタスクは、広範囲なビデオコンテンツ内での時間的グラウンドクエリの複雑さを含む、ユニークな課題を提示する。
提案手法は,クエリグラウンディングと応答を統一モデルに統合することにより,誤りの伝播を低減することで,これらの課題に対処する。
論文 参考訳(メタデータ) (2023-12-11T16:31:55Z) - Retrieval-based Video Language Model for Efficient Long Video Question
Answering [39.474247695753725]
本稿では,検索型ビデオ言語モデル(R-VLM)を提案する。
具体的には、質問(クエリ)と長いビデオから、我々のモデルは最も関連性の高い$K$のビデオチャンクを特定し、選択する。
実験の結果,長編動画の編集におけるフレームワークの有効性が検証された。
論文 参考訳(メタデータ) (2023-12-08T09:48:36Z) - NExT-QA:Next Phase of Question-Answering to Explaining Temporal Actions [80.60423934589515]
NExT-QAは、厳密に設計されたビデオ質問回答(VideoQA)ベンチマークです。
因果的行動推論,時間的行動推論,共通場面理解を対象とする複数選択およびオープンエンドQAタスクを構築した。
トップパフォーマンスの手法は浅い場面記述に優れているが、因果的および時間的行動推論に弱い。
論文 参考訳(メタデータ) (2021-05-18T04:56:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。