An Algorithm for Fixed Budget Best Arm Identification with Combinatorial Exploration
- URL: http://arxiv.org/abs/2502.01429v1
- Date: Mon, 03 Feb 2025 15:10:08 GMT
- Title: An Algorithm for Fixed Budget Best Arm Identification with Combinatorial Exploration
- Authors: Siddhartha Parupudi, Gourab Ghatak,
- Abstract summary: We consider the best arm identification problem in the $K-$armed bandit framework.
Agent is allowed to play a subset of arms at each time slot instead of one arm.
We propose an algorithm that constructs $log K$ groups and performs a likelihood ratio test to detect the presence of the best arm.
- Score: 3.9901365062418312
- License:
- Abstract: We consider the best arm identification (BAI) problem in the $K-$armed bandit framework with a modification - the agent is allowed to play a subset of arms at each time slot instead of one arm. Consequently, the agent observes the sample average of the rewards of the arms that constitute the probed subset. Several trade-offs arise here - e.g., sampling a larger number of arms together results in a wider view of the environment, while sampling fewer arms enhances the information about individual reward distributions. Furthermore, grouping a large number of suboptimal arms together albeit reduces the variance of the reward of the group, it may enhance the group mean to make it close to that containing the optimal arm. To solve this problem, we propose an algorithm that constructs $\log_2 K$ groups and performs a likelihood ratio test to detect the presence of the best arm in each of these groups. Then a Hamming decoding procedure determines the unique best arm. We derive an upper bound for the error probability of the proposed algorithm based on a new hardness parameter $H_4$. Finally, we demonstrate cases under which it outperforms the state-of-the-art algorithms for the single play case.
Related papers
- Breaking the $\log(1/Δ_2)$ Barrier: Better Batched Best Arm Identification with Adaptive Grids [28.547030766096956]
We introduce an algorithm that achieves near-optimal sample complexity and features an instance-sensitive batch complexity.
We extend this framework to the problem of batched best arm identification in linear bandits and achieve similar improvements.
arXiv Detail & Related papers (2025-01-29T01:40:36Z) - Optimal Multi-Objective Best Arm Identification with Fixed Confidence [62.36929749450298]
We consider a multi-armed bandit setting in which each arm yields an $M$-dimensional vector reward upon selection.
The end goal is to identify the best arm of em every objective in the shortest (expected) time subject to an upper bound on the probability of error.
We propose an algorithm that uses the novel idea of em surrogate proportions to sample the arms at each time step, eliminating the need to solve the max-min optimisation problem at each step.
arXiv Detail & Related papers (2025-01-23T12:28:09Z) - A General Framework for Clustering and Distribution Matching with Bandit Feedback [81.50716021326194]
We develop a general framework for clustering and distribution matching problems with bandit feedback.
We derive a non-asymptotic lower bound on the average number of arm pulls for any online algorithm with an error probability not exceeding $delta$.
Our refined analysis uncovers a novel bound on the speed at which the average number of arm pulls of our algorithm converges to the fundamental limit as $delta$ vanishes.
arXiv Detail & Related papers (2024-09-08T12:19:12Z) - Representative Arm Identification: A fixed confidence approach to identify cluster representatives [7.459521930846415]
We study the representative arm identification problem in the multi-armed bandits (MAB) framework.
The RAI problem covers as special cases several well-studied MAB problems such as identifying the best arm or any $M$ out of the top $K$.
We propose two algorithms, based on the idea of confidence intervals, and provide high probability upper bounds on their sample complexity.
arXiv Detail & Related papers (2024-08-26T11:47:52Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
We present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
In particular, we present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
arXiv Detail & Related papers (2023-12-19T13:17:43Z) - Combinatorial Stochastic-Greedy Bandit [79.1700188160944]
We propose a novelgreedy bandit (SGB) algorithm for multi-armed bandit problems when no extra information other than the joint reward of the selected set of $n$ arms at each time $tin [T]$ is observed.
SGB adopts an optimized-explore-then-commit approach and is specifically designed for scenarios with a large set of base arms.
arXiv Detail & Related papers (2023-12-13T11:08:25Z) - Covariance Adaptive Best Arm Identification [0.0]
The goal is to identify the arm with the highest mean reward with a probability of at least 1 -- $delta$, while minimizing the number of arm pulls.
We propose a more flexible scenario where arms can be dependent and rewards can be sampled simultaneously.
This framework is relevant in various applications, such as clinical trials, where similarities between patients or drugs suggest underlying correlations.
arXiv Detail & Related papers (2023-06-05T06:57:09Z) - Max-Quantile Grouped Infinite-Arm Bandits [39.7239093424124]
bandit problem in which there are a number of groups each consisting of infinitely many arms.
We introduce a two-step algorithm that first requests a fixed number of arms from each group and then runs a finite-arm grouped max-quantile bandit algorithm.
We characterize both the instance-dependent and worst-case regret, and provide a matching lower bound for the latter.
arXiv Detail & Related papers (2022-10-04T00:46:49Z) - Mean-based Best Arm Identification in Stochastic Bandits under Reward
Contamination [80.53485617514707]
This paper proposes two algorithms, a gap-based algorithm and one based on the successive elimination, for best arm identification in sub-Gaussian bandits.
Specifically, for the gap-based algorithm, the sample complexity is optimal up to constant factors, while for the successive elimination, it is optimal up to logarithmic factors.
arXiv Detail & Related papers (2021-11-14T21:49:58Z) - Optimal Best-arm Identification in Linear Bandits [79.3239137440876]
We devise a simple algorithm whose sampling complexity matches known instance-specific lower bounds.
Unlike existing best-arm identification strategies, our algorithm uses a stopping rule that does not depend on the number of arms.
arXiv Detail & Related papers (2020-06-29T14:25:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.