Enhancing Medical Image Analysis through Geometric and Photometric transformations
- URL: http://arxiv.org/abs/2501.13643v1
- Date: Thu, 23 Jan 2025 13:21:14 GMT
- Title: Enhancing Medical Image Analysis through Geometric and Photometric transformations
- Authors: Khadija Rais, Mohamed Amroune, Mohamed Yassine Haouam,
- Abstract summary: We evaluate the effectiveness of data augmentation techniques on two different medical image datasets.
In the first step, we applied some transformation techniques to the skin cancer dataset containing benign and malignant classes.
In the second step, we used the Mixup technique by mixing two random images and their corresponding masks using the retina and blood vessels dataset.
- Score: 0.40964539027092917
- License:
- Abstract: Medical image analysis suffers from a lack of labeled data due to several challenges including patient privacy and lack of experts. Although some AI models only perform well with large amounts of data, we will move to data augmentation where there is a solution to improve the performance of our models and increase the dataset size through traditional or advanced techniques. In this paper, we evaluate the effectiveness of data augmentation techniques on two different medical image datasets. In the first step, we applied some transformation techniques to the skin cancer dataset containing benign and malignant classes. Then, we trained the convolutional neural network (CNN) on the dataset before and after augmentation, which significantly improved test accuracy from 90.74% to 96.88% and decreased test loss from 0.7921 to 0.1468 after augmentation. In the second step, we used the Mixup technique by mixing two random images and their corresponding masks using the retina and blood vessels dataset, then we trained the U-net model and obtained the Dice coefficient which increased from 0 before augmentation to 0.4163 after augmentation. The result shows the effect of using data augmentation to increase the dataset size on the classification and segmentation performance.
Related papers
- A Study of Data Augmentation Techniques to Overcome Data Scarcity in Wound Classification using Deep Learning [0.0]
We show that data augmentation can improve classification performance, F1 scores, by up to 11% on top of state-of-the-art models.
Our experiments with GAN based augmentation prove the viability of using DE-GANs to generate wound images with richer variations.
arXiv Detail & Related papers (2024-11-04T00:24:50Z) - Improving Deep Learning-based Automatic Cranial Defect Reconstruction by Heavy Data Augmentation: From Image Registration to Latent Diffusion Models [0.2911706166691895]
The work is a considerable contribution to the field of artificial intelligence in the automatic modeling of personalized cranial implants.
We show that the use of heavy data augmentation significantly increases both the quantitative and qualitative outcomes.
We also show that the synthetically augmented network successfully reconstructs real clinical defects.
arXiv Detail & Related papers (2024-06-10T15:34:23Z) - Additional Look into GAN-based Augmentation for Deep Learning COVID-19
Image Classification [57.1795052451257]
We study the dependence of the GAN-based augmentation performance on dataset size with a focus on small samples.
We train StyleGAN2-ADA with both sets and then, after validating the quality of generated images, we use trained GANs as one of the augmentations approaches in multi-class classification problems.
The GAN-based augmentation approach is found to be comparable with classical augmentation in the case of medium and large datasets but underperforms in the case of smaller datasets.
arXiv Detail & Related papers (2024-01-26T08:28:13Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Diffusion-based Data Augmentation for Skin Disease Classification:
Impact Across Original Medical Datasets to Fully Synthetic Images [2.5075774184834803]
Deep neural networks still rely on large amounts of training data to avoid overfitting.
Labeled training data for real-world applications such as healthcare is limited and difficult to access.
We build upon the emerging success of text-to-image diffusion probabilistic models in augmenting the training samples of our macroscopic skin disease dataset.
arXiv Detail & Related papers (2023-01-12T04:22:23Z) - Development of an algorithm for medical image segmentation of bone
tissue in interaction with metallic implants [58.720142291102135]
This study develops an algorithm for calculating bone growth in contact with metallic implants.
Bone and implant tissue were manually segmented in the training data set.
In terms of network accuracy, the model reached around 98%.
arXiv Detail & Related papers (2022-04-22T08:17:20Z) - Feature transforms for image data augmentation [74.12025519234153]
In image classification, many augmentation approaches utilize simple image manipulation algorithms.
In this work, we build ensembles on the data level by adding images generated by combining fourteen augmentation approaches.
Pretrained ResNet50 networks are finetuned on training sets that include images derived from each augmentation method.
arXiv Detail & Related papers (2022-01-24T14:12:29Z) - Image Translation for Medical Image Generation -- Ischemic Stroke
Lesions [0.0]
Synthetic databases with annotated pathologies could provide the required amounts of training data.
We train different image-to-image translation models to synthesize magnetic resonance images of brain volumes with and without stroke lesions.
We show that for a small database of only 10 or 50 clinical cases, synthetic data augmentation yields significant improvement.
arXiv Detail & Related papers (2020-10-05T09:12:28Z) - Evaluation of Deep Convolutional Generative Adversarial Networks for
data augmentation of chest X-ray images [0.0]
Medical image datasets are usually imbalanced, due to the high costs of obtaining the data and time-consuming annotations.
In this work, we performed data augmentation on the Chest X-rays dataset through generative modeling.
arXiv Detail & Related papers (2020-09-02T16:43:55Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
We investigate the robustness of deep learning in CT image reconstruction by showing false negative and false positive lesion cases.
We propose a data consistent reconstruction (DCR) method to improve their image quality, which combines the advantages of compressed sensing and deep learning.
The efficacy of the proposed method is demonstrated in cone-beam CT with truncated data, limited-angle data and sparse-view data, respectively.
arXiv Detail & Related papers (2020-05-20T13:30:49Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
We develop a novel automatic learning-based data augmentation method for medical image segmentation.
In our method, we innovatively combine the data augmentation module and the subsequent segmentation module in an end-to-end training manner with a consistent loss.
We extensively evaluated our method on CT kidney tumor segmentation which validated the promising results of our method.
arXiv Detail & Related papers (2020-02-22T14:10:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.