MPG-SAM 2: Adapting SAM 2 with Mask Priors and Global Context for Referring Video Object Segmentation
- URL: http://arxiv.org/abs/2501.13667v1
- Date: Thu, 23 Jan 2025 13:53:33 GMT
- Title: MPG-SAM 2: Adapting SAM 2 with Mask Priors and Global Context for Referring Video Object Segmentation
- Authors: Fu Rong, Meng Lan, Qian Zhang, Lefei Zhang,
- Abstract summary: Referring video object segmentation (RVOS) aims to segment objects in a video according to textual descriptions.
The Segment Anything Model 2 (SAM 2) has shown great effectiveness across various video segmentation tasks.
We propose a novel RVOS framework, termed MPG-SAM 2, to address these challenges.
- Score: 21.43947114468122
- License:
- Abstract: Referring video object segmentation (RVOS) aims to segment objects in a video according to textual descriptions, which requires the integration of multimodal information and temporal dynamics perception. The Segment Anything Model 2 (SAM 2) has shown great effectiveness across various video segmentation tasks. However, its application to offline RVOS is challenged by the translation of the text into effective prompts and a lack of global context awareness. In this paper, we propose a novel RVOS framework, termed MPG-SAM 2, to address these challenges. Specifically, MPG-SAM 2 employs a unified multimodal encoder to jointly encode video and textual features, generating semantically aligned video and text embeddings, along with multimodal class tokens. A mask prior generator utilizes the video embeddings and class tokens to create pseudo masks of target objects and global context. These masks are fed into the prompt encoder as dense prompts along with multimodal class tokens as sparse prompts to generate accurate prompts for SAM 2. To provide the online SAM 2 with a global view, we introduce a hierarchical global-historical aggregator, which allows SAM 2 to aggregate global and historical information of target objects at both pixel and object levels, enhancing the target representation and temporal consistency. Extensive experiments on several RVOS benchmarks demonstrate the superiority of MPG-SAM 2 and the effectiveness of our proposed modules.
Related papers
- Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos [110.3379755761583]
Sa2VA is a unified model for grounded understanding of both images and videos.
It supports a wide range of image and video tasks, including referring segmentation and conversation.
We show that Sa2VA achieves state-of-the-art across multiple tasks, particularly in referring video object segmentation.
arXiv Detail & Related papers (2025-01-07T18:58:54Z) - Through-The-Mask: Mask-based Motion Trajectories for Image-to-Video Generation [52.337472185022136]
We consider the task of Image-to-Video (I2V) generation, which involves transforming static images into realistic video sequences based on a textual description.
We propose a two-stage compositional framework that decomposes I2V generation into: (i) An explicit intermediate representation generation stage, followed by (ii) A video generation stage that is conditioned on this representation.
We evaluate our method on challenging benchmarks with multi-object and high-motion scenarios and empirically demonstrate that the proposed method achieves state-of-the-art consistency.
arXiv Detail & Related papers (2025-01-06T14:49:26Z) - Video Object Segmentation via SAM 2: The 4th Solution for LSVOS Challenge VOS Track [28.52754012142431]
Segment Anything Model 2 (SAM 2) is a foundation model towards solving promptable visual segmentation in images and videos.
SAM 2 builds a data engine, which improves model and data via user interaction, to collect the largest video segmentation dataset to date.
Without fine-tuning on the training set, SAM 2 achieved 75.79 J&F on the test set and ranked 4th place for 6th LSVOS Challenge VOS Track.
arXiv Detail & Related papers (2024-08-19T16:13:14Z) - SAM2-UNet: Segment Anything 2 Makes Strong Encoder for Natural and Medical Image Segmentation [51.90445260276897]
We prove that the Segment Anything Model 2 (SAM2) can be a strong encoder for U-shaped segmentation models.
We propose a simple but effective framework, termed SAM2-UNet, for versatile image segmentation.
arXiv Detail & Related papers (2024-08-16T17:55:38Z) - FocSAM: Delving Deeply into Focused Objects in Segmenting Anything [58.042354516491024]
The Segment Anything Model (SAM) marks a notable milestone in segmentation models.
We propose FocSAM with a pipeline redesigned on two pivotal aspects.
First, we propose Dynamic Window Multi-head Self-Attention (Dwin-MSA) to dynamically refocus SAM's image embeddings on the target object.
Second, we propose Pixel-wise Dynamic ReLU (P-DyReLU) to enable sufficient integration of interactive information from a few initial clicks.
arXiv Detail & Related papers (2024-05-29T02:34:13Z) - Beyond One-to-One: Rethinking the Referring Image Segmentation [117.53010476628029]
Referring image segmentation aims to segment the target object referred by a natural language expression.
We propose a Dual Multi-Modal Interaction (DMMI) Network, which contains two decoder branches.
In the text-to-image decoder, text embedding is utilized to query the visual feature and localize the corresponding target.
Meanwhile, the image-to-text decoder is implemented to reconstruct the erased entity-phrase conditioned on the visual feature.
arXiv Detail & Related papers (2023-08-26T11:39:22Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
This paper presents the RefSAM model, which explores the potential of SAM for referring video object segmentation.
Our proposed approach adapts the original SAM model to enhance cross-modality learning by employing a lightweight Cross-RValModal.
We employ a parameter-efficient tuning strategy to align and fuse the language and vision features effectively.
arXiv Detail & Related papers (2023-07-03T13:21:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.