Certified Robustness Under Bounded Levenshtein Distance
- URL: http://arxiv.org/abs/2501.13676v2
- Date: Thu, 20 Feb 2025 15:44:15 GMT
- Title: Certified Robustness Under Bounded Levenshtein Distance
- Authors: Elias Abad Rocamora, Grigorios G. Chrysos, Volkan Cevher,
- Abstract summary: We propose the first method for computing the Lipschitz constant of convolutional classifiers with respect to the Levenshtein distance.
Our method, LipsLev, is able to obtain $38.80$% and $13.93$% verified accuracy at distance $1$ and $2$ respectively.
- Score: 55.54271307451233
- License:
- Abstract: Text classifiers suffer from small perturbations, that if chosen adversarially, can dramatically change the output of the model. Verification methods can provide robustness certificates against such adversarial perturbations, by computing a sound lower bound on the robust accuracy. Nevertheless, existing verification methods incur in prohibitive costs and cannot practically handle Levenshtein distance constraints. We propose the first method for computing the Lipschitz constant of convolutional classifiers with respect to the Levenshtein distance. We use these Lipschitz constant estimates for training 1-Lipschitz classifiers. This enables computing the certified radius of a classifier in a single forward pass. Our method, LipsLev, is able to obtain $38.80$% and $13.93$% verified accuracy at distance $1$ and $2$ respectively in the AG-News dataset, while being $4$ orders of magnitude faster than existing approaches. We believe our work can open the door to more efficient verification in the text domain.
Related papers
- The Lipschitz-Variance-Margin Tradeoff for Enhanced Randomized Smoothing [85.85160896547698]
Real-life applications of deep neural networks are hindered by their unsteady predictions when faced with noisy inputs and adversarial attacks.
We show how to design an efficient classifier with a certified radius by relying on noise injection into the inputs.
Our novel certification procedure allows us to use pre-trained models with randomized smoothing, effectively improving the current certification radius in a zero-shot manner.
arXiv Detail & Related papers (2023-09-28T22:41:47Z) - Confidence-aware Training of Smoothed Classifiers for Certified
Robustness [75.95332266383417]
We use "accuracy under Gaussian noise" as an easy-to-compute proxy of adversarial robustness for an input.
Our experiments show that the proposed method consistently exhibits improved certified robustness upon state-of-the-art training methods.
arXiv Detail & Related papers (2022-12-18T03:57:12Z) - Improved techniques for deterministic l2 robustness [63.34032156196848]
Training convolutional neural networks (CNNs) with a strict 1-Lipschitz constraint under the $l_2$ norm is useful for adversarial robustness, interpretable gradients and stable training.
We introduce a procedure to certify robustness of 1-Lipschitz CNNs by replacing the last linear layer with a 1-hidden layer.
We significantly advance the state-of-the-art for standard and provable robust accuracies on CIFAR-10 and CIFAR-100.
arXiv Detail & Related papers (2022-11-15T19:10:12Z) - Getting a-Round Guarantees: Floating-Point Attacks on Certified Robustness [19.380453459873298]
Adversarial examples pose a security risk as they can alter decisions of a machine learning classifier through slight input perturbations.
We show that these guarantees can be invalidated due to limitations of floating-point representation that cause rounding errors.
We show that the attack can be carried out against linear classifiers that have exact certifiable guarantees and against neural networks that have conservative certifications.
arXiv Detail & Related papers (2022-05-20T13:07:36Z) - Smooth-Reduce: Leveraging Patches for Improved Certified Robustness [100.28947222215463]
We propose a training-free, modified smoothing approach, Smooth-Reduce.
Our algorithm classifies overlapping patches extracted from an input image, and aggregates the predicted logits to certify a larger radius around the input.
We provide theoretical guarantees for such certificates, and empirically show significant improvements over other randomized smoothing methods.
arXiv Detail & Related papers (2022-05-12T15:26:20Z) - Extensions and limitations of randomized smoothing for robustness
guarantees [13.37805637358556]
We study how the choice of divergence between smoothing measures affects the final robustness guarantee.
We develop a method to certify robustness against any $ell_p$ ($pinmathbbN_>0$) minimized adversarial perturbation.
arXiv Detail & Related papers (2020-06-07T17:22:32Z) - A Closer Look at Accuracy vs. Robustness [94.2226357646813]
Current methods for training robust networks lead to a drop in test accuracy.
We show that real image datasets are actually separated.
We conclude that achieving robustness and accuracy in practice may require using methods that impose local Lipschitzness.
arXiv Detail & Related papers (2020-03-05T07:09:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.