Question Answering on Patient Medical Records with Private Fine-Tuned LLMs
- URL: http://arxiv.org/abs/2501.13687v1
- Date: Thu, 23 Jan 2025 14:13:56 GMT
- Title: Question Answering on Patient Medical Records with Private Fine-Tuned LLMs
- Authors: Sara Kothari, Ayush Gupta,
- Abstract summary: Large Language Models (LLMs) enable semantic question answering (QA) over medical data.
ensuring privacy and compliance requires edge and private deployments of LLMs.
We evaluate privately hosted, fine-tuned LLMs against benchmark models such as GPT-4 and GPT-4o.
- Score: 1.8524621910043437
- License:
- Abstract: Healthcare systems continuously generate vast amounts of electronic health records (EHRs), commonly stored in the Fast Healthcare Interoperability Resources (FHIR) standard. Despite the wealth of information in these records, their complexity and volume make it difficult for users to retrieve and interpret crucial health insights. Recent advances in Large Language Models (LLMs) offer a solution, enabling semantic question answering (QA) over medical data, allowing users to interact with their health records more effectively. However, ensuring privacy and compliance requires edge and private deployments of LLMs. This paper proposes a novel approach to semantic QA over EHRs by first identifying the most relevant FHIR resources for a user query (Task1) and subsequently answering the query based on these resources (Task2). We explore the performance of privately hosted, fine-tuned LLMs, evaluating them against benchmark models such as GPT-4 and GPT-4o. Our results demonstrate that fine-tuned LLMs, while 250x smaller in size, outperform GPT-4 family models by 0.55% in F1 score on Task1 and 42% on Meteor Task in Task2. Additionally, we examine advanced aspects of LLM usage, including sequential fine-tuning, model self-evaluation (narcissistic evaluation), and the impact of training data size on performance. The models and datasets are available here: https://huggingface.co/genloop
Related papers
- Leveraging Large Language Models for Medical Information Extraction and Query Generation [2.1793134762413433]
This paper introduces a system that integrates large language models (LLMs) into the clinical trial retrieval process.
We evaluate six LLMs for query generation, focusing on open-source and relatively small models that require minimal computational resources.
arXiv Detail & Related papers (2024-10-31T12:01:51Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals.
GMAI-MMBench is the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date.
It is constructed from 284 datasets across 38 medical image modalities, 18 clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual Question Answering (VQA) format.
arXiv Detail & Related papers (2024-08-06T17:59:21Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - TAT-LLM: A Specialized Language Model for Discrete Reasoning over Tabular and Textual Data [73.29220562541204]
We consider harnessing the amazing power of language models (LLMs) to solve our task.
We develop a TAT-LLM language model by fine-tuning LLaMA 2 with the training data generated automatically from existing expert-annotated datasets.
arXiv Detail & Related papers (2024-01-24T04:28:50Z) - Distilling Large Language Models for Matching Patients to Clinical
Trials [3.4068841624198942]
The recent success of large language models (LLMs) has paved the way for their adoption in the high-stakes domain of healthcare.
This study presents the first systematic examination of the efficacy of both proprietary (GPT-3.5, and GPT-4) and open-source LLMs (LLAMA 7B,13B, and 70B) for the task of patient-trial matching.
Our findings reveal that open-source LLMs, when fine-tuned on this limited and synthetic dataset, demonstrate performance parity with their proprietary counterparts.
arXiv Detail & Related papers (2023-12-15T17:11:07Z) - MKRAG: Medical Knowledge Retrieval Augmented Generation for Medical Question Answering [45.84961106102445]
Large Language Models (LLMs) often perform poorly on domain-specific tasks such as medical question answering (QA)
We propose a comprehensive retrieval strategy to extract medical facts from an external knowledge base, and then inject them into the LLM's query prompt.
Our retrieval-augmented Vicuna-7B model exhibited an accuracy improvement from 44.46% to 48.54%.
arXiv Detail & Related papers (2023-09-27T21:26:03Z) - Retrieving Evidence from EHRs with LLMs: Possibilities and Challenges [18.56314471146199]
Large volume of notes often associated with patients together with time constraints renders manually identifying relevant evidence practically infeasible.
We propose and evaluate a zero-shot strategy for using LLMs as a mechanism to efficiently retrieve and summarize unstructured evidence in patient EHR.
arXiv Detail & Related papers (2023-09-08T18:44:47Z) - MedAlign: A Clinician-Generated Dataset for Instruction Following with
Electronic Medical Records [60.35217378132709]
Large language models (LLMs) can follow natural language instructions with human-level fluency.
evaluating LLMs on realistic text generation tasks for healthcare remains challenging.
We introduce MedAlign, a benchmark dataset of 983 natural language instructions for EHR data.
arXiv Detail & Related papers (2023-08-27T12:24:39Z) - Large Language Models are Effective Text Rankers with Pairwise Ranking Prompting [65.00288634420812]
Pairwise Ranking Prompting (PRP) is a technique to significantly reduce the burden on Large Language Models (LLMs)
Our results are the first in the literature to achieve state-of-the-art ranking performance on standard benchmarks using moderate-sized open-sourced LLMs.
arXiv Detail & Related papers (2023-06-30T11:32:25Z) - Enhancing Small Medical Learners with Privacy-preserving Contextual Prompting [24.201549275369487]
We present a method that harnesses large language models' medical expertise to boost SLM performance in medical tasks under privacy-restricted scenarios.
Specifically, we mitigate patient privacy issues by extracting keywords from medical data and prompting the LLM to generate a medical knowledge-intensive context.
Our method significantly enhances performance in both few-shot and full training settings across three medical knowledge-intensive tasks.
arXiv Detail & Related papers (2023-05-22T05:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.