PatientDx: Merging Large Language Models for Protecting Data-Privacy in Healthcare
- URL: http://arxiv.org/abs/2504.17360v1
- Date: Thu, 24 Apr 2025 08:21:04 GMT
- Title: PatientDx: Merging Large Language Models for Protecting Data-Privacy in Healthcare
- Authors: Jose G. Moreno, Jesus Lovon, M'Rick Robin-Charlet, Christine Damase-Michel, Lynda Tamine,
- Abstract summary: Fine-tuning of Large Language Models (LLMs) has become the default practice for improving model performance on a given task.<n>PatientDx is a framework of model merging that allows the design of effective LLMs for health-predictive tasks without requiring fine-tuning nor adaptation on patient data.
- Score: 2.1046377530356764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fine-tuning of Large Language Models (LLMs) has become the default practice for improving model performance on a given task. However, performance improvement comes at the cost of training on vast amounts of annotated data which could be sensitive leading to significant data privacy concerns. In particular, the healthcare domain is one of the most sensitive domains exposed to data privacy issues. In this paper, we present PatientDx, a framework of model merging that allows the design of effective LLMs for health-predictive tasks without requiring fine-tuning nor adaptation on patient data. Our proposal is based on recently proposed techniques known as merging of LLMs and aims to optimize a building block merging strategy. PatientDx uses a pivotal model adapted to numerical reasoning and tunes hyperparameters on examples based on a performance metric but without training of the LLM on these data. Experiments using the mortality tasks of the MIMIC-IV dataset show improvements up to 7% in terms of AUROC when compared to initial models. Additionally, we confirm that when compared to fine-tuned models, our proposal is less prone to data leak problems without hurting performance. Finally, we qualitatively show the capabilities of our proposal through a case study. Our best model is publicly available at https://huggingface.co/ Jgmorenof/mistral\_merged\_0\_4.
Related papers
- Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
We propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets.
The framework initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method.
The generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality.
arXiv Detail & Related papers (2024-11-21T02:30:53Z) - Masked Clinical Modelling: A Framework for Synthetic and Augmented Survival Data Generation [1.7769033811751995]
We present Masked Clinical Modelling (MCM), a framework inspired by masked language modelling.
MCM is designed for both data synthesis and conditional data augmentation.
We evaluate this prototype on the WHAS500 dataset using Cox Proportional Hazards models.
arXiv Detail & Related papers (2024-10-22T08:38:46Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Is larger always better? Evaluating and prompting large language models for non-generative medical tasks [11.799956298563844]
This study benchmarks various models, including GPT-based LLMs, BERT-based models, and traditional clinical predictive models.
We focused on tasks such as readmission and prediction, disease hierarchy reconstruction, and biomedical sentence matching.
Results indicated that LLMs exhibited robust zero-shot predictive capabilities on structured EHR data when using well-designed prompting strategies.
For unstructured medical texts, LLMs did not outperform finetuned BERT models, which excelled in both supervised and unsupervised tasks.
arXiv Detail & Related papers (2024-07-26T06:09:10Z) - Spread Preference Annotation: Direct Preference Judgment for Efficient LLM Alignment [72.99676237703099]
We propose a new framework that boosts the alignment of large language models with human preferences.<n>Our key idea is leveraging the human prior knowledge within the small (seed) data.<n>We introduce a noise-aware preference learning algorithm to mitigate the risk of low quality within generated preference data.
arXiv Detail & Related papers (2024-06-06T18:01:02Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models.
This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution.
We show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors.
arXiv Detail & Related papers (2024-05-28T20:43:53Z) - Advancing the Robustness of Large Language Models through Self-Denoised Smoothing [50.54276872204319]
Large language models (LLMs) have achieved significant success, but their vulnerability to adversarial perturbations has raised considerable concerns.
We propose to leverage the multitasking nature of LLMs to first denoise the noisy inputs and then to make predictions based on these denoised versions.
Unlike previous denoised smoothing techniques in computer vision, which require training a separate model to enhance the robustness of LLMs, our method offers significantly better efficiency and flexibility.
arXiv Detail & Related papers (2024-04-18T15:47:00Z) - Large Language Model Distilling Medication Recommendation Model [58.94186280631342]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)<n>Our research aims to transform existing medication recommendation methodologies using LLMs.<n>To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - How Good Are Synthetic Medical Images? An Empirical Study with Lung
Ultrasound [0.3312417881789094]
Adding synthetic training data using generative models offers a low-cost method to deal with the data scarcity challenge.
We show that training with both synthetic and real data outperforms training with real data alone.
arXiv Detail & Related papers (2023-10-05T15:42:53Z) - Improving Small Language Models on PubMedQA via Generative Data
Augmentation [4.96649519549027]
Large Language Models (LLMs) have made remarkable advancements in the field of natural language processing.
Small Language Models (SLMs) are known for their efficiency, but they often struggle with limited capacity and training data.
We introduce a novel method aimed at improving SLMs in the medical domain using LLM-based generative data augmentation.
arXiv Detail & Related papers (2023-05-12T23:49:23Z) - An Investigation of Smart Contract for Collaborative Machine Learning
Model Training [3.5679973993372642]
Collaborative machine learning (CML) has penetrated various fields in the era of big data.
As the training of ML models requires a massive amount of good quality data, it is necessary to eliminate concerns about data privacy.
Based on blockchain, smart contracts enable automatic execution of data preserving and validation.
arXiv Detail & Related papers (2022-09-12T04:25:01Z) - Just Fine-tune Twice: Selective Differential Privacy for Large Language
Models [69.66654761324702]
We propose a simple yet effective just-fine-tune-twice privacy mechanism to achieve SDP for large Transformer-based language models.
Experiments show that our models achieve strong performance while staying robust to the canary insertion attack.
arXiv Detail & Related papers (2022-04-15T22:36:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.