DI-BENCH: Benchmarking Large Language Models on Dependency Inference with Testable Repositories at Scale
- URL: http://arxiv.org/abs/2501.13699v1
- Date: Thu, 23 Jan 2025 14:27:11 GMT
- Title: DI-BENCH: Benchmarking Large Language Models on Dependency Inference with Testable Repositories at Scale
- Authors: Linghao Zhang, Junhao Wang, Shilin He, Chaoyun Zhang, Yu Kang, Bowen Li, Jiaheng Wen, Chengxing Xie, Maoquan Wang, Yufan Huang, Elsie Nallipogu, Qingwei Lin, Yingnong Dang, Saravan Rajmohan, Dongmei Zhang, Qi Zhang,
- Abstract summary: DI-BENCH is a large-scale benchmark and evaluation framework designed to assess Large Language Models' capability on dependency inference.
The benchmark features 581 repositories with testing environments across Python, C#, Rust, and JavaScript.
Extensive experiments with textual and execution-based metrics reveal that the current best-performing model achieves only a 42.9% execution pass rate.
- Score: 39.92722886613929
- License:
- Abstract: Large Language Models have advanced automated software development, however, it remains a challenge to correctly infer dependencies, namely, identifying the internal components and external packages required for a repository to successfully run. Existing studies highlight that dependency-related issues cause over 40\% of observed runtime errors on the generated repository. To address this, we introduce DI-BENCH, a large-scale benchmark and evaluation framework specifically designed to assess LLMs' capability on dependency inference. The benchmark features 581 repositories with testing environments across Python, C#, Rust, and JavaScript. Extensive experiments with textual and execution-based metrics reveal that the current best-performing model achieves only a 42.9% execution pass rate, indicating significant room for improvement. DI-BENCH establishes a new viewpoint for evaluating LLM performance on repositories, paving the way for more robust end-to-end software synthesis.
Related papers
- A Systematic Approach for Assessing Large Language Models' Test Case Generation Capability [0.8287206589886879]
We propose the Generated Benchmark from Control-Flow Structure and Variable Usage Composition (GBCV) approach to evaluate large language models (LLMs)
By leveraging basic control-flow structures and variable usage, GBCV provides a flexible framework to create a spectrum of programs ranging from simple to complex.
Our findings indicate that GPT-4o performs better on complex program structures, while all models effectively detect boundary values in simple conditions but face challenges with arithmetic computations.
arXiv Detail & Related papers (2025-02-05T03:51:44Z) - Commit0: Library Generation from Scratch [77.38414688148006]
Commit0 is a benchmark that challenges AI agents to write libraries from scratch.
Agents are provided with a specification document outlining the library's API as well as a suite of interactive unit tests.
Commit0 also offers an interactive environment where models receive static analysis and execution feedback on the code they generate.
arXiv Detail & Related papers (2024-12-02T18:11:30Z) - Repository-level Code Translation Benchmark Targeting Rust [28.25765853736366]
We introduce first repository-level code translation benchmark comprising 375 tasks targeting Rust.
Using this benchmark, we study four state-of-the-art large language models (LLMs)
Our findings reveal that LLMs exhibit substantially worse performance (41.5%-56.2% Pass@1 drop of GPT-4) on repository-level translations compared to simpler tasks.
arXiv Detail & Related papers (2024-11-21T10:00:52Z) - COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement [80.18490952057125]
Iterative refinement has emerged as an effective paradigm for enhancing the capabilities of large language models (LLMs) on complex tasks.
We propose Context-Wise Order-Agnostic Language Modeling (COrAL) to overcome these challenges.
Our approach models multiple token dependencies within manageable context windows, enabling the model to perform iterative refinement internally.
arXiv Detail & Related papers (2024-10-12T23:56:19Z) - On the Impacts of Contexts on Repository-Level Code Generation [5.641402231731082]
We present RepoExec, a novel benchmark designed to evaluate repository-level code generation.
We focus on three key aspects: executability, functional correctness through comprehensive test case generation, and accurate utilization of cross-file contexts.
arXiv Detail & Related papers (2024-06-17T10:45:22Z) - Class-Level Code Generation from Natural Language Using Iterative, Tool-Enhanced Reasoning over Repository [4.767858874370881]
We introduce RepoClassBench, a benchmark designed to rigorously evaluate LLMs in generating class-level code within real-world repositories.
RepoClassBench includes "Natural Language to Class generation" tasks across Java, Python & C# from a selection of repositories.
We introduce Retrieve-Repotools-Reflect (RRR), a novel approach that equips LLMs with static analysis tools to iteratively navigate & reason about repository-level context.
arXiv Detail & Related papers (2024-04-22T03:52:54Z) - PPTC-R benchmark: Towards Evaluating the Robustness of Large Language
Models for PowerPoint Task Completion [96.47420221442397]
We construct adversarial user instructions by attacking user instructions at sentence, semantic, and multi-language levels.
We test 3 closed-source and 4 open-source LLMs using a benchmark that incorporates robustness settings.
We find that GPT-4 exhibits the highest performance and strong robustness in our benchmark.
arXiv Detail & Related papers (2024-03-06T15:33:32Z) - Benchmark Self-Evolving: A Multi-Agent Framework for Dynamic LLM
Evaluation [51.99752147380505]
This paper presents a benchmark self-evolving framework to dynamically evaluate Large Language Models (LLMs)
We utilize a multi-agent system to manipulate the context or question of original instances, reframing new evolving instances with high confidence.
Our framework widens performance discrepancies both between different models and within the same model across various tasks.
arXiv Detail & Related papers (2024-02-18T03:40:06Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
We propose a generative judge with 13B parameters, Auto-J, designed to address these challenges.
Our model is trained on user queries and LLM-generated responses under massive real-world scenarios.
Experimentally, Auto-J outperforms a series of strong competitors, including both open-source and closed-source models.
arXiv Detail & Related papers (2023-10-09T07:27:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.