論文の概要: You Only Crash Once v2: Perceptually Consistent Strong Features for One-Stage Domain Adaptive Detection of Space Terrain
- arxiv url: http://arxiv.org/abs/2501.13725v1
- Date: Thu, 23 Jan 2025 14:58:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:59:43.143438
- Title: You Only Crash Once v2: Perceptually Consistent Strong Features for One-Stage Domain Adaptive Detection of Space Terrain
- Title(参考訳): 1度しかクラッシュしないv2: 1段階の領域適応検出のための知覚的に一貫性のある強い特徴
- Authors: Timothy Chase Jr, Christopher Wilson, Karthik Dantu,
- Abstract要約: 惑星、月、小天体の表面地形をその場で検出することは、自律的な宇宙船の用途に不可欠である。
Unsupervised Domain Adaptation (UDA)は、異なるデータソースによるモデルトレーニングを容易にすることで、有望なソリューションを提供する。
UDA下での地形検出能力を向上するVSA方式の新たな追加を提案する。
- 参考スコア(独自算出の注目度): 4.339510167603377
- License:
- Abstract: The in-situ detection of planetary, lunar, and small-body surface terrain is crucial for autonomous spacecraft applications, where learning-based computer vision methods are increasingly employed to enable intelligence without prior information or human intervention. However, many of these methods remain computationally expensive for spacecraft processors and prevent real-time operation. Training of such algorithms is additionally complex due to the scarcity of labeled data and reliance on supervised learning approaches. Unsupervised Domain Adaptation (UDA) offers a promising solution by facilitating model training with disparate data sources such as simulations or synthetic scenes, although UDA is difficult to apply to celestial environments where challenging feature spaces are paramount. To alleviate such issues, You Only Crash Once (YOCOv1) has studied the integration of Visual Similarity-based Alignment (VSA) into lightweight one-stage object detection architectures to improve space terrain UDA. Although proven effective, the approach faces notable limitations, including performance degradations in multi-class and high-altitude scenarios. Building upon the foundation of YOCOv1, we propose novel additions to the VSA scheme that enhance terrain detection capabilities under UDA, and our approach is evaluated across both simulated and real-world data. Our second YOCO rendition, YOCOv2, is capable of achieving state-of-the-art UDA performance on surface terrain detection, where we showcase improvements upwards of 31% compared with YOCOv1 and terrestrial state-of-the-art. We demonstrate the practical utility of YOCOv2 with spacecraft flight hardware performance benchmarking and qualitative evaluation of NASA mission data.
- Abstract(参考訳): 惑星、月、小天体の表面地形をその場で検出することは、学習ベースのコンピュータビジョン手法が、事前の情報や人間の介入なしにインテリジェンスを有効にするために、自律的な宇宙船アプリケーションに不可欠である。
しかし、これらの手法の多くは、宇宙船のプロセッサにとって計算コストが高く、リアルタイム動作を妨げている。
このようなアルゴリズムのトレーニングは、ラベル付きデータの不足と教師付き学習アプローチに依存するため、さらに複雑である。
Unsupervised Domain Adaptation (UDA)は、シミュレーションや合成シーンなどの異なるデータソースによるモデルトレーニングを容易にすることで、有望なソリューションを提供する。
このような問題を緩和するため、You Only Crash Once (YOCOv1)は、視覚的類似性に基づくアライメント(VSA)を軽量なワンステージオブジェクト検出アーキテクチャに統合し、空間地形UDAを改善した。
有効性は証明されているが、マルチクラスや高高度シナリオのパフォーマンス低下など、注目すべき制限に直面している。
YOCOv1の基盤として,UDA下の地形検出能力を向上するVSAスキームの新たな追加を提案する。
第2回 YOCOv2 では地表地形検出における最先端の UDA 性能を実現し, YOCOv1 や地上の YOCOv1 に比べて31% 向上したことを示す。
宇宙機のハードウェア性能ベンチマークとNASAミッションデータの質的評価によるYOCOv2の実用性を実証する。
関連論文リスト
- Cooperative Students: Navigating Unsupervised Domain Adaptation in Nighttime Object Detection [1.6624384368855527]
教師なし領域適応 (Unsupervised Domain Adaptation, UDA) は、厳密な条件下での物体検出において顕著な進歩を示した。
UDAのパフォーマンスは特に夜間の低可視性シナリオで低下する。
この問題に対処するため,textbfCooperative textbfStudents (textbfCoS) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-02T14:26:18Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
スモークとダストは、搭載された知覚システムに依存するため、あらゆる移動ロボットプラットフォームの性能に影響を与える。
本稿では,重みと空間情報に基づく新しいモジュラー計算フィルタを提案する。
論文 参考訳(メタデータ) (2023-08-14T16:48:57Z) - A Survey on Deep Learning-Based Monocular Spacecraft Pose Estimation:
Current State, Limitations and Prospects [7.08026800833095]
非協力宇宙船の姿勢を推定することは、軌道上の視覚ベースのシステムを実現するための重要なコンピュータビジョン問題である。
コンピュータビジョンの一般的な傾向に続き、この問題を解決するためにディープラーニング(DL)手法を活用する研究がますます増えている。
有望な研究段階の結果にもかかわらず、実際のミッションでこのような方法が使われるのを防ぐ大きな課題が今も残っている。
論文 参考訳(メタデータ) (2023-05-12T09:52:53Z) - You Only Crash Once: Improved Object Detection for Real-Time,
Sim-to-Real Hazardous Terrain Detection and Classification for Autonomous
Planetary Landings [7.201292864036088]
危険地を検出するための安価で効果的な方法は、視覚カメラを使用することである。
視覚的危険地形検出の伝統的な技術は、テンプレートマッチングと事前構築されたハザードマップへの登録に焦点を当てている。
深層学習に基づく視覚的危険地形検出と分類技術であるYou Only Crash Once (YOCO)を紹介した。
論文 参考訳(メタデータ) (2023-03-08T21:11:51Z) - Spacecraft Pose Estimation Based on Unsupervised Domain Adaptation and
on a 3D-Guided Loss Combination [0.0]
宇宙船のポーズ推定は、2つの宇宙船が互いに周回しなければならない宇宙ミッションを可能にする重要なタスクである。
ポーズ推定の最先端アルゴリズムは、データ駆動方式を採用している。
宇宙環境に関連するコストと困難のために、宇宙環境で撮影された宇宙船の実際の訓練データが欠落している。
これは3Dデータシミュレータの導入を動機付け、データ可用性の問題を解決すると同時に、トレーニング(ソース)とテスト(ターゲット)ドメインの間に大きなギャップを導入する。
論文 参考訳(メタデータ) (2022-12-27T08:57:46Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
小型ターゲット検出のためのシンプルで高速で効率的なネットワークであるYOLO-Sを提案する。
YOLO-SはDarknet20をベースとした小さな特徴抽出器と、バイパスと連結の両方を通じて接続をスキップする。
YOLO-Sはパラメータサイズが87%減少し、約半分のFLOPがYOLOv3となり、低消費電力の産業用アプリケーションに実用化された。
論文 参考訳(メタデータ) (2022-04-05T16:29:49Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
本研究では,衛星画像の高可用性を活用するための自己監督型コントラスト事前学習法として,エンベディングアースを提案する。
提案手法による事前学習では, 25%の絶対mIoUが得られた。
学習した特徴は、異なる領域間で一般化され、提案した事前学習スキームの可能性を開放する。
論文 参考訳(メタデータ) (2022-03-11T16:14:14Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
仮想データから絶対スケールを取得するための新しいフレームワークであるVRVOを提案する。
まず、モノクロ実画像とステレオ仮想データの両方を用いて、スケール対応の異種ネットワークをトレーニングする。
結果として生じるスケール一貫性の相違は、直接VOシステムと統合される。
論文 参考訳(メタデータ) (2022-03-11T01:51:54Z) - Space Non-cooperative Object Active Tracking with Deep Reinforcement
Learning [1.212848031108815]
DRLAVTと命名されたDQNアルゴリズムに基づくエンドツーエンドのアクティブなトラッキング手法を提案する。
追尾宇宙船のアプローチを、色やRGBD画像にのみ依存した任意の空間の非協力目標に導くことができる。
位置ベースのビジュアルサーボベースラインアルゴリズムでは、最先端の2DモノクロトラッカーであるSiamRPNをはるかに上回っている。
論文 参考訳(メタデータ) (2021-12-18T06:12:24Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
本稿では,無人航空機(UAV)による3D環境におけるIoT(Internet-of-Things)システムについて検討する。
本稿では,TD3-TDCTMアルゴリズムの完成時間最小化のためのトラジェクトリ設計を提案する。
シミュレーションの結果,従来の3つの非学習ベースライン法よりもTD3-TDCTMアルゴリズムの方が優れていることが示された。
論文 参考訳(メタデータ) (2021-07-23T03:33:29Z) - Batch Exploration with Examples for Scalable Robotic Reinforcement
Learning [63.552788688544254]
BEE(Batch Exploration with Examples)は、重要状態の画像の少ない数の人間がガイドする状態空間の関連領域を探索する。
BEEは、シミュレーションと本物のフランカロボットの両方で、視覚ベースの操作に挑戦することができる。
論文 参考訳(メタデータ) (2020-10-22T17:49:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。