Unveiling the Power of Noise Priors: Enhancing Diffusion Models for Mobile Traffic Prediction
- URL: http://arxiv.org/abs/2501.13794v1
- Date: Thu, 23 Jan 2025 16:13:08 GMT
- Title: Unveiling the Power of Noise Priors: Enhancing Diffusion Models for Mobile Traffic Prediction
- Authors: Zhi Sheng, Yuan Yuan, Jingtao Ding, Yong Li,
- Abstract summary: Noise shapes mobile traffic predictions, exhibiting distinct and consistent patterns.
We propose NPDiff, a framework that decomposes noise into textitprior and textitresidual components.
NPDiff can seamlessly integrate with various diffusion-based prediction models, delivering predictions that are effective, efficient, and robust.
- Score: 11.091373697136047
- License:
- Abstract: Accurate prediction of mobile traffic, \textit{i.e.,} network traffic from cellular base stations, is crucial for optimizing network performance and supporting urban development. However, the non-stationary nature of mobile traffic, driven by human activity and environmental changes, leads to both regular patterns and abrupt variations. Diffusion models excel in capturing such complex temporal dynamics due to their ability to capture the inherent uncertainties. Most existing approaches prioritize designing novel denoising networks but often neglect the critical role of noise itself, potentially leading to sub-optimal performance. In this paper, we introduce a novel perspective by emphasizing the role of noise in the denoising process. Our analysis reveals that noise fundamentally shapes mobile traffic predictions, exhibiting distinct and consistent patterns. We propose NPDiff, a framework that decomposes noise into \textit{prior} and \textit{residual} components, with the \textit{prior} derived from data dynamics, enhancing the model's ability to capture both regular and abrupt variations. NPDiff can seamlessly integrate with various diffusion-based prediction models, delivering predictions that are effective, efficient, and robust. Extensive experiments demonstrate that it achieves superior performance with an improvement over 30\%, offering a new perspective on leveraging diffusion models in this domain.
Related papers
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Improved Noise Schedule for Diffusion Training [51.849746576387375]
We propose a novel approach to design the noise schedule for enhancing the training of diffusion models.
We empirically demonstrate the superiority of our noise schedule over the standard cosine schedule.
arXiv Detail & Related papers (2024-07-03T17:34:55Z) - ADM: Accelerated Diffusion Model via Estimated Priors for Robust Motion Prediction under Uncertainties [6.865435680843742]
We propose a novel diffusion-based, acceleratable framework that adeptly predicts future trajectories of agents with enhanced resistance to noise.
Our method meets the rigorous real-time operational standards essential for autonomous vehicles.
It achieves significant improvement in multi-agent motion prediction on the Argoverse 1 motion forecasting dataset.
arXiv Detail & Related papers (2024-05-01T18:16:55Z) - Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Towards Generalizable and Interpretable Motion Prediction: A Deep
Variational Bayes Approach [54.429396802848224]
This paper proposes an interpretable generative model for motion prediction with robust generalizability to out-of-distribution cases.
For interpretability, the model achieves the target-driven motion prediction by estimating the spatial distribution of long-term destinations.
Experiments on motion prediction datasets validate that the fitted model can be interpretable and generalizable.
arXiv Detail & Related papers (2024-03-10T04:16:04Z) - Enhancing Traffic Prediction with Learnable Filter Module [42.44466196331814]
Noise in traffic data can be challenging to model due to its nature and can lead to overfitting risks.
We propose a learnable filter module to filter out noise in traffic data adaptively.
We demonstrate that the proposed module is lightweight, easy to integrate with existing models, and can significantly improve traffic prediction performance.
arXiv Detail & Related papers (2023-10-24T09:16:13Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - Removing Structured Noise with Diffusion Models [14.187153638386379]
We show that the powerful paradigm of posterior sampling with diffusion models can be extended to include rich, structured, noise models.
We demonstrate strong performance gains across various inverse problems with structured noise, outperforming competitive baselines.
This opens up new opportunities and relevant practical applications of diffusion modeling for inverse problems in the context of non-Gaussian measurement models.
arXiv Detail & Related papers (2023-01-20T23:42:25Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Traffic Flow Forecasting with Maintenance Downtime via Multi-Channel
Attention-Based Spatio-Temporal Graph Convolutional Networks [4.318655493189584]
We propose a model to predict traffic speed under the impact of construction work.
The model is based on the powerful attention-based,temporal graph convolution architecture but utilizes various channels to integrate different sources of information.
The model is evaluated on two benchmark datasets and a novel dataset we have collected over the bustling roadway's corner in Northern Virginia.
arXiv Detail & Related papers (2021-10-04T16:07:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.