Training-Free Zero-Shot Temporal Action Detection with Vision-Language Models
- URL: http://arxiv.org/abs/2501.13795v1
- Date: Thu, 23 Jan 2025 16:13:58 GMT
- Title: Training-Free Zero-Shot Temporal Action Detection with Vision-Language Models
- Authors: Chaolei Han, Hongsong Wang, Jidong Kuang, Lei Zhang, Jie Gui,
- Abstract summary: We propose a training-Free Zero-shot temporal Action Detection (FreeZAD) method.
We leverage existing vision-language (ViL) models to directly classify and localize unseen activities within untrimmed videos.
Our training-free method outperforms state-of-the-art unsupervised methods while requiring only 1/13 of the runtime.
- Score: 15.17499718666202
- License:
- Abstract: Existing zero-shot temporal action detection (ZSTAD) methods predominantly use fully supervised or unsupervised strategies to recognize unseen activities. However, these training-based methods are prone to domain shifts and require high computational costs, which hinder their practical applicability in real-world scenarios. In this paper, unlike previous works, we propose a training-Free Zero-shot temporal Action Detection (FreeZAD) method, leveraging existing vision-language (ViL) models to directly classify and localize unseen activities within untrimmed videos without any additional fine-tuning or adaptation. We mitigate the need for explicit temporal modeling and reliance on pseudo-label quality by designing the LOGarithmic decay weighted Outer-Inner-Contrastive Score (LogOIC) and frequency-based Actionness Calibration. Furthermore, we introduce a test-time adaptation (TTA) strategy using Prototype-Centric Sampling (PCS) to expand FreeZAD, enabling ViL models to adapt more effectively for ZSTAD. Extensive experiments on the THUMOS14 and ActivityNet-1.3 datasets demonstrate that our training-free method outperforms state-of-the-art unsupervised methods while requiring only 1/13 of the runtime. When equipped with TTA, the enhanced method further narrows the gap with fully supervised methods.
Related papers
- Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - ACTRESS: Active Retraining for Semi-supervised Visual Grounding [52.08834188447851]
A previous study, RefTeacher, makes the first attempt to tackle this task by adopting the teacher-student framework to provide pseudo confidence supervision and attention-based supervision.
This approach is incompatible with current state-of-the-art visual grounding models, which follow the Transformer-based pipeline.
Our paper proposes the ACTive REtraining approach for Semi-Supervised Visual Grounding, abbreviated as ACTRESS.
arXiv Detail & Related papers (2024-07-03T16:33:31Z) - Adaptive Retention & Correction: Test-Time Training for Continual Learning [114.5656325514408]
A common problem in continual learning is the classification layer's bias towards the most recent task.
We name our approach Adaptive Retention & Correction (ARC)
ARC achieves an average performance increase of 2.7% and 2.6% on the CIFAR-100 and Imagenet-R datasets.
arXiv Detail & Related papers (2024-05-23T08:43:09Z) - Test-Time Zero-Shot Temporal Action Localization [58.84919541314969]
ZS-TAL seeks to identify and locate actions in untrimmed videos unseen during training.
Training-based ZS-TAL approaches assume the availability of labeled data for supervised learning.
We introduce a novel method that performs Test-Time adaptation for Temporal Action localization (T3AL)
arXiv Detail & Related papers (2024-04-08T11:54:49Z) - Simplified Temporal Consistency Reinforcement Learning [19.814047499837084]
We show that a simple representation learning approach relying on a latent dynamics model trained by latent temporal consistency is sufficient for high-performance RL.
Our approach outperforms model-free methods by a large margin and matches model-based methods' sample efficiency while training 2.4 times faster.
arXiv Detail & Related papers (2023-06-15T19:37:43Z) - Active Learning with Effective Scoring Functions for Semi-Supervised
Temporal Action Localization [15.031156121516211]
This paper focuses on a rarely investigated yet practical task named semi-supervised TAL.
We propose an effective active learning method, named AL-STAL.
Experiment results show that AL-STAL outperforms the existing competitors and achieves satisfying performance compared with fully-supervised learning.
arXiv Detail & Related papers (2022-08-31T13:39:38Z) - Zero-Shot Temporal Action Detection via Vision-Language Prompting [134.26292288193298]
We propose a novel zero-Shot Temporal Action detection model via Vision-LanguagE prompting (STALE)
Our model significantly outperforms state-of-the-art alternatives.
Our model also yields superior results on supervised TAD over recent strong competitors.
arXiv Detail & Related papers (2022-07-17T13:59:46Z) - Mitigating Sampling Bias and Improving Robustness in Active Learning [13.994967246046008]
We introduce supervised contrastive active learning by leveraging the contrastive loss for active learning under a supervised setting.
We propose an unbiased query strategy that selects informative data samples of diverse feature representations.
We empirically demonstrate our proposed methods reduce sampling bias, achieve state-of-the-art accuracy and model calibration in an active learning setup.
arXiv Detail & Related papers (2021-09-13T20:58:40Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.