Mitigating Sampling Bias and Improving Robustness in Active Learning
- URL: http://arxiv.org/abs/2109.06321v1
- Date: Mon, 13 Sep 2021 20:58:40 GMT
- Title: Mitigating Sampling Bias and Improving Robustness in Active Learning
- Authors: Ranganath Krishnan, Alok Sinha, Nilesh Ahuja, Mahesh Subedar, Omesh
Tickoo, Ravi Iyer
- Abstract summary: We introduce supervised contrastive active learning by leveraging the contrastive loss for active learning under a supervised setting.
We propose an unbiased query strategy that selects informative data samples of diverse feature representations.
We empirically demonstrate our proposed methods reduce sampling bias, achieve state-of-the-art accuracy and model calibration in an active learning setup.
- Score: 13.994967246046008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents simple and efficient methods to mitigate sampling bias in
active learning while achieving state-of-the-art accuracy and model robustness.
We introduce supervised contrastive active learning by leveraging the
contrastive loss for active learning under a supervised setting. We propose an
unbiased query strategy that selects informative data samples of diverse
feature representations with our methods: supervised contrastive active
learning (SCAL) and deep feature modeling (DFM). We empirically demonstrate our
proposed methods reduce sampling bias, achieve state-of-the-art accuracy and
model calibration in an active learning setup with the query computation 26x
faster than Bayesian active learning by disagreement and 11x faster than
CoreSet. The proposed SCAL method outperforms by a big margin in robustness to
dataset shift and out-of-distribution.
Related papers
- Maximally Separated Active Learning [32.98415531556376]
We propose an active learning method that utilizes fixed equiangular hyperspherical points as class prototypes.
We demonstrate strong performance over existing active learning techniques across five benchmark datasets.
arXiv Detail & Related papers (2024-11-26T14:02:43Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data.
One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is.
This paper proposes the it least disagree metric (LDM) as the smallest probability of disagreement of the predicted label.
arXiv Detail & Related papers (2024-01-18T08:12:23Z) - Optimal Sample Selection Through Uncertainty Estimation and Its
Application in Deep Learning [22.410220040736235]
We present a theoretically optimal solution for addressing both coreset selection and active learning.
Our proposed method, COPS, is designed to minimize the expected loss of a model trained on subsampled data.
arXiv Detail & Related papers (2023-09-05T14:06:33Z) - Active Learning with Combinatorial Coverage [0.0]
Active learning is a practical field of machine learning that automates the process of selecting which data to label.
Current methods are effective in reducing the burden of data labeling but are heavily model-reliant.
This has led to the inability of sampled data to be transferred to new models as well as issues with sampling bias.
We propose active learning methods utilizing coverage to overcome these issues.
arXiv Detail & Related papers (2023-02-28T13:43:23Z) - Temporal Output Discrepancy for Loss Estimation-based Active Learning [65.93767110342502]
We present a novel deep active learning approach that queries the oracle for data annotation when the unlabeled sample is believed to incorporate high loss.
Our approach achieves superior performances than the state-of-the-art active learning methods on image classification and semantic segmentation tasks.
arXiv Detail & Related papers (2022-12-20T19:29:37Z) - Improving Robustness and Efficiency in Active Learning with Contrastive
Loss [13.994967246046008]
This paper introduces supervised contrastive active learning (SCAL) by leveraging the contrastive loss for active learning in a supervised setting.
We propose efficient query strategies in active learning to select unbiased and informative data samples of diverse feature representations.
arXiv Detail & Related papers (2021-09-13T21:09:21Z) - Low-Regret Active learning [64.36270166907788]
We develop an online learning algorithm for identifying unlabeled data points that are most informative for training.
At the core of our work is an efficient algorithm for sleeping experts that is tailored to achieve low regret on predictable (easy) instances.
arXiv Detail & Related papers (2021-04-06T22:53:45Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Active Learning for Sequence Tagging with Deep Pre-trained Models and
Bayesian Uncertainty Estimates [52.164757178369804]
Recent advances in transfer learning for natural language processing in conjunction with active learning open the possibility to significantly reduce the necessary annotation budget.
We conduct an empirical study of various Bayesian uncertainty estimation methods and Monte Carlo dropout options for deep pre-trained models in the active learning framework.
We also demonstrate that to acquire instances during active learning, a full-size Transformer can be substituted with a distilled version, which yields better computational performance.
arXiv Detail & Related papers (2021-01-20T13:59:25Z) - Semi-supervised Batch Active Learning via Bilevel Optimization [89.37476066973336]
We formulate our approach as a data summarization problem via bilevel optimization.
We show that our method is highly effective in keyword detection tasks in the regime when only few labeled samples are available.
arXiv Detail & Related papers (2020-10-19T16:53:24Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
Deep predictive models rely on human supervision in the form of labeled training data.
We propose Ask-n-Learn, an active learning approach based on gradient embeddings obtained using the pesudo-labels estimated in each of the algorithm.
arXiv Detail & Related papers (2020-09-30T05:19:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.