A space-decoupling framework for optimization on bounded-rank matrices with orthogonally invariant constraints
- URL: http://arxiv.org/abs/2501.13830v1
- Date: Thu, 23 Jan 2025 16:54:03 GMT
- Title: A space-decoupling framework for optimization on bounded-rank matrices with orthogonally invariant constraints
- Authors: Yan Yang, Bin Gao, Ya-xiang Yuan,
- Abstract summary: We propose a space-decoupling framework for optimization on bounded-rank matrices.
We show that the tangent cone of coupled constraints is the intersection of tangent cones of each constraint.
We unveil the equivalence between the reformulated problem and the original problem.
- Score: 4.917399520581689
- License:
- Abstract: Imposing additional constraints on low-rank optimization has garnered growing interest. However, the geometry of coupled constraints hampers the well-developed low-rank structure and makes the problem intricate. To this end, we propose a space-decoupling framework for optimization on bounded-rank matrices with orthogonally invariant constraints. The ``space-decoupling" is reflected in several ways. We show that the tangent cone of coupled constraints is the intersection of tangent cones of each constraint. Moreover, we decouple the intertwined bounded-rank and orthogonally invariant constraints into two spaces, leading to optimization on a smooth manifold. Implementing Riemannian algorithms on this manifold is painless as long as the geometry of additional constraints is known. In addition, we unveil the equivalence between the reformulated problem and the original problem. Numerical experiments on real-world applications -- spherical data fitting, graph similarity measuring, low-rank SDP, model reduction of Markov processes, reinforcement learning, and deep learning -- validate the superiority of the proposed framework.
Related papers
- Joint Metric Space Embedding by Unbalanced OT with Gromov-Wasserstein Marginal Penalization [3.7498611358320733]
We propose a new approach for unsupervised alignment of heterogeneous datasets.
Our method is based on an unbalanced optimal transport problem with Gromov-Wasserstein marginalization.
arXiv Detail & Related papers (2025-02-11T12:28:47Z) - Structured Regularization for Constrained Optimization on the SPD Manifold [1.1126342180866644]
We introduce a class of structured regularizers, based on symmetric gauge functions, which allow for solving constrained optimization on the SPD manifold with faster unconstrained methods.
We show that our structured regularizers can be chosen to preserve or induce desirable structure, in particular convexity and "difference of convex" structure.
arXiv Detail & Related papers (2024-10-12T22:11:22Z) - Infeasible Deterministic, Stochastic, and Variance-Reduction Algorithms for Optimization under Orthogonality Constraints [9.301728976515255]
This article provides new practical and theoretical developments for the landing algorithm.
First, the method is extended to the Stiefel manifold.
We also consider variance reduction algorithms when the cost function is an average of many functions.
arXiv Detail & Related papers (2023-03-29T07:36:54Z) - Algorithm for Constrained Markov Decision Process with Linear
Convergence [55.41644538483948]
An agent aims to maximize the expected accumulated discounted reward subject to multiple constraints on its costs.
A new dual approach is proposed with the integration of two ingredients: entropy regularized policy and Vaidya's dual.
The proposed approach is shown to converge (with linear rate) to the global optimum.
arXiv Detail & Related papers (2022-06-03T16:26:38Z) - Optimization on manifolds: A symplectic approach [127.54402681305629]
We propose a dissipative extension of Dirac's theory of constrained Hamiltonian systems as a general framework for solving optimization problems.
Our class of (accelerated) algorithms are not only simple and efficient but also applicable to a broad range of contexts.
arXiv Detail & Related papers (2021-07-23T13:43:34Z) - Lifting the Convex Conjugate in Lagrangian Relaxations: A Tractable
Approach for Continuous Markov Random Fields [53.31927549039624]
We show that a piecewise discretization preserves better contrast from existing discretization problems.
We apply this theory to the problem of matching two images.
arXiv Detail & Related papers (2021-07-13T12:31:06Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
We propose a generalization extraient spaces which converges to a stationary point.
The algorithm applies not only to general $p$-normed spaces, but also to general $p$-dimensional vector spaces.
arXiv Detail & Related papers (2020-10-31T21:35:42Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.