論文の概要: PointOBB-v3: Expanding Performance Boundaries of Single Point-Supervised Oriented Object Detection
- arxiv url: http://arxiv.org/abs/2501.13898v1
- Date: Thu, 23 Jan 2025 18:18:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:59:12.130884
- Title: PointOBB-v3: Expanding Performance Boundaries of Single Point-Supervised Oriented Object Detection
- Title(参考訳): PointOBB-v3:シングルポイントスーパービジョンオブジェクト指向物体検出の性能境界の拡張
- Authors: Peiyuan Zhang, Junwei Luo, Xue Yang, Yi Yu, Qingyun Li, Yue Zhou, Xiaosong Jia, Xudong Lu, Jingdong Chen, Xiang Li, Junchi Yan, Yansheng Li,
- Abstract要約: 我々は,より強力な単一点制御OODフレームワークであるPointOBB-v3を提案する。
追加のプリミティブなしで擬似回転ボックスを生成し、エンドツーエンドのパラダイムをサポートする。
本手法は従来の最先端手法と比較して3.56%の精度向上を実現している。
- 参考スコア(独自算出の注目度): 65.84604846389624
- License:
- Abstract: With the growing demand for oriented object detection (OOD), recent studies on point-supervised OOD have attracted significant interest. In this paper, we propose PointOBB-v3, a stronger single point-supervised OOD framework. Compared to existing methods, it generates pseudo rotated boxes without additional priors and incorporates support for the end-to-end paradigm. PointOBB-v3 functions by integrating three unique image views: the original view, a resized view, and a rotated/flipped (rot/flp) view. Based on the views, a scale augmentation module and an angle acquisition module are constructed. In the first module, a Scale-Sensitive Consistency (SSC) loss and a Scale-Sensitive Feature Fusion (SSFF) module are introduced to improve the model's ability to estimate object scale. To achieve precise angle predictions, the second module employs symmetry-based self-supervised learning. Additionally, we introduce an end-to-end version that eliminates the pseudo-label generation process by integrating a detector branch and introduces an Instance-Aware Weighting (IAW) strategy to focus on high-quality predictions. We conducted extensive experiments on the DIOR-R, DOTA-v1.0/v1.5/v2.0, FAIR1M, STAR, and RSAR datasets. Across all these datasets, our method achieves an average improvement in accuracy of 3.56% in comparison to previous state-of-the-art methods. The code will be available at https://github.com/ZpyWHU/PointOBB-v3.
- Abstract(参考訳): 近年,オブジェクト指向物体検出 (OOD) の需要が高まっている。
本稿では,より強力な単一点制御OODフレームワークであるPointOBB-v3を提案する。
既存の方法と比較すると、追加の事前処理なしで擬似回転ボックスを生成し、エンドツーエンドのパラダイムをサポートする。
PointOBB-v3は、オリジナルビュー、リサイズビュー、ローテーション/フリップ(rot/flp)ビューの3つのユニークなイメージビューを統合することで機能する。
ビューに基づいて、スケール拡張モジュールと角度取得モジュールを構築する。
最初のモジュールでは、オブジェクトスケールを推定するモデルの能力を改善するために、スケール・センシティブ・一貫性(SSC)損失とスケール・センシティブ・フィーチャー・フュージョン(SSFF)モジュールが導入された。
正確な角度予測を達成するため、第2モジュールは対称性に基づく自己教師付き学習を採用する。
さらに、検出器ブランチを統合することで擬似ラベル生成プロセスを排除するエンドツーエンドバージョンを導入し、高品質な予測に焦点をあてるインスタンス・アウェア・ウェイトリング(IAW)戦略を導入する。
本研究では,DIOR-R,DOTA-v1.0/v1.5/v2.0,FAIR1M,STAR,RSARデータセットについて広範な実験を行った。
これらすべてのデータセットに対して,従来の最先端手法と比較して平均3.56%の精度向上を実現している。
コードはhttps://github.com/ZpyWHU/PointOBB-v3.comから入手できる。
関連論文リスト
- PointOBB: Learning Oriented Object Detection via Single Point
Supervision [55.88982271340328]
本稿では,オブジェクト指向物体検出のための最初の単一点ベース OBB 生成法である PointOBB を提案する。
PointOBBは、オリジナルビュー、リサイズビュー、ローテーション/フリップ(rot/flp)ビューの3つのユニークなビューの協調利用を通じて動作する。
DIOR-RとDOTA-v1.0データセットの実験結果は、PointOBBが有望な性能を達成することを示す。
論文 参考訳(メタデータ) (2023-11-23T15:51:50Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
本稿では,3次元点雲における複数物体の同時検出と追跡手法を提案する。
本モデルでは,複数のフレームを用いた時間情報を利用してオブジェクトを検出し,一つのネットワーク上で追跡する。
論文 参考訳(メタデータ) (2022-11-01T20:59:38Z) - SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object
Detection [78.90102636266276]
SASA(Semantics-Augmented Set Abstraction)と呼ばれる新しい集合抽象化手法を提案する。
そこで本研究では, 推定点前景スコアに基づいて, より重要な前景点の維持を支援するセマンティックス誘導点サンプリングアルゴリズムを提案する。
実際には、SASAは、前景オブジェクトに関連する貴重な点を識別し、ポイントベースの3D検出のための特徴学習を改善するのに有効である。
論文 参考訳(メタデータ) (2022-01-06T08:54:47Z) - Anchor Retouching via Model Interaction for Robust Object Detection in
Aerial Images [15.404024559652534]
本稿では,新しいトレーニングサンプルジェネレータを構築するために,動的拡張アンカー(DEA)ネットワークを提案する。
提案手法は,適度な推論速度とトレーニングの計算オーバーヘッドを伴って,最先端の性能を精度良く達成する。
論文 参考訳(メタデータ) (2021-12-13T14:37:20Z) - IAFA: Instance-aware Feature Aggregation for 3D Object Detection from a
Single Image [37.83574424518901]
単一の画像からの3Dオブジェクト検出は、自動運転において重要なタスクです。
本稿では,3次元物体検出の精度向上のために有用な情報を集約するインスタンス認識手法を提案する。
論文 参考訳(メタデータ) (2021-03-05T05:47:52Z) - SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection [9.924083358178239]
本稿では,3次元物体検出におけるコンテキストモデリングのための2種類の自己注意法を提案する。
まず,現状のbev,voxel,ポイントベース検出器にペアワイズ自着機構を組み込む。
次に,ランダムにサンプリングされた位置の変形を学習することにより,最も代表的な特徴のサブセットをサンプリングするセルフアテンション変種を提案する。
論文 参考訳(メタデータ) (2021-01-07T18:30:32Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDARベースの3Dオブジェクト検出は、自動運転にとって重要なタスクです。
現在のアプローチでは、遠方および閉ざされた物体の偏りと部分的な点雲に苦しむ。
本稿では,この課題を2つの解決法で解決する新しい二段階アプローチ,pc-rgnnを提案する。
論文 参考訳(メタデータ) (2020-12-18T18:06:43Z) - Multi-View Adaptive Fusion Network for 3D Object Detection [14.506796247331584]
LiDAR-カメラ融合に基づく3Dオブジェクト検出は、自動運転の新たな研究テーマになりつつある。
本稿では,LiDARの鳥眼ビュー,LiDARレンジビュー,カメラビューイメージを3Dオブジェクト検出の入力として利用する,単一ステージ多視点融合フレームワークを提案する。
これら2つのコンポーネントを統合するために,MVAF-Netというエンドツーエンドの学習ネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-02T00:06:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。