Secure Quantum Key Distribution with Room-Temperature Quantum Emitter
- URL: http://arxiv.org/abs/2501.13902v1
- Date: Thu, 23 Jan 2025 18:26:09 GMT
- Title: Secure Quantum Key Distribution with Room-Temperature Quantum Emitter
- Authors: Ömer S. Tapşın, Furkan Ağlarcı, Serkan Ateş,
- Abstract summary: We demonstrate the B92 protocol based on single photons from defects in hexagonal boron nitride (hBN)
The results show a sifted key rate (SiKR) of 17.5 kbps with a QBER of 6.49 % at a dynamic polarization encoding rate of 40 MHz.
- Score: 0.0
- License:
- Abstract: On-demand generation of single photons from solid-state quantum emitters is a key building block for future quantum networks, particularly quantum key distribution (QKD) systems, by enabling higher secure key rates (SKR) and lower quantum bit error rates (QBER). In this work, we demonstrate the B92 protocol based on single photons from defects in hexagonal boron nitride (hBN). The results show a sifted key rate (SiKR) of 17.5 kbps with a QBER of 6.49 % at a dynamic polarization encoding rate of 40 MHz. Finite-key analysis yields a SKR of 7 kbps, as one of the highest SKR obtained for any room-temperature single photon source. Our results highlight the potential of hBN defects in advancing quantum communication technologies.
Related papers
- Polarization-encoded quantum key distribution with a room-temperature telecom single-photon emitter [47.54990103162742]
Single photon sources (SPSs) are directly applicable in quantum key distribution (QKD)
We report an observation of polarization-encoded QKD using a room-temperature telecom SPS based on a GaN defect.
arXiv Detail & Related papers (2024-09-25T16:17:36Z) - Experimental single-photon quantum key distribution surpassing the fundamental coherent-state rate limit [11.795169912821704]
Single-photon sources are essential for quantum networks, enabling applications ranging from quantum key distribution (QKD) to the burgeoning quantum internet.
Here, we report high-rate QKD using a high-efficiency single-photon source, enabling an SKR transcending the fundamental rate limit of coherent light.
Our findings conclusively demonstrate the superior performance of nanotechnology-based single-photon sources over coherent light for QKD applications, marking a pivotal stride towards the realization of a global quantum internet.
arXiv Detail & Related papers (2024-06-04T07:28:15Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - High-rate intercity quantum key distribution with a semiconductor single-photon source [0.8114920774958947]
Quantum key distribution (QKD) enables the transmission of information that is secure against general attacks by eavesdroppers.
The use of on-demand quantum light sources in QKD protocols is expected to help improve security and maximum tolerable loss.
Here we report on the first QKD experiment using a bright deterministic single photon source.
A BB84 protocol based on polarisation encoding is realised using the high-rate single photons in the telecommunication C-band emitted from a semiconductor QD embedded in a circular Bragg grating structure.
arXiv Detail & Related papers (2023-08-30T09:57:07Z) - Controlling the Photon Number Coherence of Solid-state Quantum Light
Sources for Quantum Cryptography [0.0]
Quantum communication networks rely on quantum cryptographic protocols including quantum key distribution (QKD) using single photons.
A critical element regarding the security of QKD protocols is the photon number coherence (PNC)
We exploit two-photon excitation of a quantum dot combined with a stimulation pulse to generate on-demand single photons with high purity and indistinguishability.
arXiv Detail & Related papers (2023-05-31T16:46:00Z) - Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron
Nitride [48.97025221755422]
We demonstrate a room temperature, discrete-variable quantum key distribution system using a bright single photon source in hexagonal-boron nitride.
We have generated keys with one million bits length, and demonstrated a secret key of approximately 70,000 bits, at a quantum bit error rate of 6%.
Our work demonstrates the first proof of concept finite-key BB84 QKD system realised with hBN defects.
arXiv Detail & Related papers (2023-02-13T09:38:51Z) - Efficient room-temperature molecular single-photon sources for quantum
key distribution [51.56795970800138]
Quantum Key Distribution (QKD) allows the distribution of cryptographic keys between multiple users in an information-theoretic secure way.
We introduce and demonstrate a proof-of-concept QKD system exploiting a molecule-based single-photon source operating at room temperature and emitting at 785nm.
arXiv Detail & Related papers (2022-02-25T11:52:10Z) - Integrated Room Temperature Single Photon Source for Quantum Key
Distribution [46.31057926734952]
In this work, we realise an ultra-bright solid-state SPS based on an atomic defect in hexagonal boron nitride (hBN)
The integrated system is capable of producing over ten million single photons per second at room temperature.
arXiv Detail & Related papers (2022-01-28T01:32:03Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.