論文の概要: PBM-VFL: Vertical Federated Learning with Feature and Sample Privacy
- arxiv url: http://arxiv.org/abs/2501.13916v1
- Date: Thu, 23 Jan 2025 18:53:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:57:32.403866
- Title: PBM-VFL: Vertical Federated Learning with Feature and Sample Privacy
- Title(参考訳): PBM-VFL: 機能とサンプルプライバシを備えた垂直的フェデレーション学習
- Authors: Linh Tran, Timothy Castiglia, Stacy Patterson, Ana Milanova,
- Abstract要約: 異なるプライバシを保証する通信効率のよい垂直フェデレーション学習アルゴリズムを提案する。
機能プライバシという新しい概念を定義し,エンドツーエンドの機能分析とアルゴリズムのサンプルプライバシを定義した。
- 参考スコア(独自算出の注目度): 10.34830018358421
- License:
- Abstract: We present Poisson Binomial Mechanism Vertical Federated Learning (PBM-VFL), a communication-efficient Vertical Federated Learning algorithm with Differential Privacy guarantees. PBM-VFL combines Secure Multi-Party Computation with the recently introduced Poisson Binomial Mechanism to protect parties' private datasets during model training. We define the novel concept of feature privacy and analyze end-to-end feature and sample privacy of our algorithm. We compare sample privacy loss in VFL with privacy loss in HFL. We also provide the first theoretical characterization of the relationship between privacy budget, convergence error, and communication cost in differentially-private VFL. Finally, we empirically show that our model performs well with high levels of privacy.
- Abstract(参考訳): 本稿では,PBM-VFL(Poisson Binomial Mechanism Vertical Federated Learning)を提案する。
PBM-VFLはSecure Multi-Party Computationと最近導入されたPoisson Binomial Mechanismを組み合わせて、モデルトレーニング中のパーティのプライベートデータセットを保護する。
機能プライバシという新しい概念を定義し,エンドツーエンドの機能分析とアルゴリズムのサンプルプライバシを定義した。
VFLのプライバシー損失とHFLのプライバシー損失の比較を行った。
また,VFLにおけるプライバシ予算,収束誤差,通信コストの関係を理論的に評価した。
最後に、私たちのモデルが高レベルのプライバシでうまく機能していることを実証的に示します。
関連論文リスト
- Enhancing Feature-Specific Data Protection via Bayesian Coordinate Differential Privacy [55.357715095623554]
ローカル微分プライバシー(LDP)は、ユーザーが外部の関係者を信頼することなく、強力なプライバシー保証を提供する。
本稿では,ベイジアン・フレームワークであるベイジアン・コーディネート・ディファレンシャル・プライバシ(BCDP)を提案する。
論文 参考訳(メタデータ) (2024-10-24T03:39:55Z) - CorBin-FL: A Differentially Private Federated Learning Mechanism using Common Randomness [6.881974834597426]
Federated Learning (FL)は、分散機械学習のための有望なフレームワークとして登場した。
相関2値量子化を用いて差分プライバシーを実現するプライバシー機構であるCorBin-FLを導入する。
また,PLDP,ユーザレベル,サンプルレベルの中央差分プライバシー保証に加えて,AugCorBin-FLも提案する。
論文 参考訳(メタデータ) (2024-09-20T00:23:44Z) - Convergent Differential Privacy Analysis for General Federated Learning: the $f$-DP Perspective [57.35402286842029]
フェデレートラーニング(Federated Learning, FL)は、ローカルプライバシを重視した効率的な協調トレーニングパラダイムである。
ディファレンシャルプライバシ(DP)は、私的保護の信頼性を捕捉し、保証するための古典的なアプローチである。
論文 参考訳(メタデータ) (2024-08-28T08:22:21Z) - Universally Harmonizing Differential Privacy Mechanisms for Federated Learning: Boosting Accuracy and Convergence [22.946928984205588]
ディファレンシャル・プライベート・フェデレーション・ラーニング(DP-FL)は協調モデルトレーニングにおいて有望な手法である。
本稿では,任意のランダム化機構を普遍的に調和させる最初のDP-FLフレームワーク(UDP-FL)を提案する。
その結果,UDP-FLは異なる推論攻撃に対して強い耐性を示すことがわかった。
論文 参考訳(メタデータ) (2024-07-20T00:11:59Z) - The Effect of Quantization in Federated Learning: A Rényi Differential Privacy Perspective [15.349042342071439]
フェデレートラーニング(FL)は、分散データを使用したプライバシ保護機械学習を大いに約束する新興パラダイムである。
プライバシーを強化するために、FLはモデルの重み付けにガウスノイズを加えることを含む差分プライバシー(DP)と組み合わせることができる。
本研究では,FLシステムにおける量子化がプライバシに与える影響について検討する。
論文 参考訳(メタデータ) (2024-05-16T13:50:46Z) - Differentially Private Wireless Federated Learning Using Orthogonal
Sequences [56.52483669820023]
本稿では,FLORAS と呼ばれる AirComp 法を提案する。
FLORASはアイテムレベルとクライアントレベルの差分プライバシー保証の両方を提供する。
新たなFL収束バウンダリが導出され、プライバシー保証と組み合わせることで、達成された収束率と差分プライバシーレベルのスムーズなトレードオフが可能になる。
論文 参考訳(メタデータ) (2023-06-14T06:35:10Z) - BlindFL: Vertical Federated Machine Learning without Peeking into Your
Data [20.048695060411774]
垂直連合学習(VFL)は、さまざまな参加者のプライベートデータに基づいてMLモデルを構築する場合を記述している。
本稿では,VFLトレーニングと推論のための新しいフレームワークであるBlindFLを紹介する。
BlindFLは、堅牢なプライバシー保証を達成しつつ、多様なデータセットやモデルを効率的にサポートする。
論文 参考訳(メタデータ) (2022-06-16T07:26:50Z) - Understanding Clipping for Federated Learning: Convergence and
Client-Level Differential Privacy [67.4471689755097]
本稿では, 切断したFedAvgが, 実質的なデータ均一性でも驚くほど良好に動作できることを実証的に示す。
本稿では,差分プライベート(DP)FedAvgアルゴリズムの収束解析を行い,クリッピングバイアスとクライアント更新の分布との関係を明らかにする。
論文 参考訳(メタデータ) (2021-06-25T14:47:19Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
エピソード強化学習(RL)のためのプライバシー保護探索ポリシーを設計する。
まず、共同微分プライバシー(JDP)の概念を用いた有意義なプライバシー定式化を提供する。
そこで我々は,強いPACと後悔境界を同時に達成し,JDP保証を享受する,プライベートな楽観主義に基づく学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-09-18T20:18:35Z) - Hybrid Differentially Private Federated Learning on Vertically
Partitioned Data [41.7896466307821]
垂直統合学習(VFL)のためのDPフレームワークであるHDP-VFLについて述べる。
我々は、VFLの中間結果(IR)が、コミュニケーション中にトレーニングデータのプライベート情報を漏洩させる方法について分析する。
数学的には、我々のアルゴリズムはVFLのユーティリティ保証を提供するだけでなく、マルチレベルプライバシも提供することを証明している。
論文 参考訳(メタデータ) (2020-09-06T16:06:04Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
フェデレートラーニングは、ユーザ間でプライベートデータを共有せずに、協調的にモデルを学習することで、データのプライバシを保護することを目的としている。
敵は、リリースしたモデルを攻撃することによって、プライベートトレーニングデータを推測することができる。
差別化プライバシは、トレーニングされたモデルの正確性や実用性を著しく低下させる価格で、このような攻撃に対する統計的保護を提供する。
論文 参考訳(メタデータ) (2020-05-01T04:28:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。