論文の概要: Temporal Preference Optimization for Long-Form Video Understanding
- arxiv url: http://arxiv.org/abs/2501.13919v1
- Date: Thu, 23 Jan 2025 18:58:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:59:55.884506
- Title: Temporal Preference Optimization for Long-Form Video Understanding
- Title(参考訳): 長時間ビデオ理解のための時間優先最適化
- Authors: Rui Li, Xiaohan Wang, Yuhui Zhang, Zeyu Wang, Serena Yeung-Levy,
- Abstract要約: TPO(Temporal Preference Optimization)は、ビデオLMMの時間的グラウンド機能を高めるために設計された、新しいポストトレーニングフレームワークである。
TPOは、手動の注釈付きデータへの依存を減らしながら、時間的理解を著しく向上させる。
LLaVA-Video-TPOは、Video-MMEベンチマークでトップ7Bモデルとしての地位を確立している。
- 参考スコア(独自算出の注目度): 28.623353303256653
- License:
- Abstract: Despite significant advancements in video large multimodal models (video-LMMs), achieving effective temporal grounding in long-form videos remains a challenge for existing models. To address this limitation, we propose Temporal Preference Optimization (TPO), a novel post-training framework designed to enhance the temporal grounding capabilities of video-LMMs through preference learning. TPO adopts a self-training approach that enables models to differentiate between well-grounded and less accurate temporal responses by leveraging curated preference datasets at two granularities: localized temporal grounding, which focuses on specific video segments, and comprehensive temporal grounding, which captures extended temporal dependencies across entire video sequences. By optimizing on these preference datasets, TPO significantly enhances temporal understanding while reducing reliance on manually annotated data. Extensive experiments on three long-form video understanding benchmarks--LongVideoBench, MLVU, and Video-MME--demonstrate the effectiveness of TPO across two state-of-the-art video-LMMs. Notably, LLaVA-Video-TPO establishes itself as the leading 7B model on the Video-MME benchmark, underscoring the potential of TPO as a scalable and efficient solution for advancing temporal reasoning in long-form video understanding. Project page: https://ruili33.github.io/tpo_website.
- Abstract(参考訳): ビデオ大マルチモーダルモデル(ビデオ-LMM)の大幅な進歩にもかかわらず、長編ビデオにおいて効果的な時間的グラウンド化を実現することは、既存のモデルにとって課題である。
この制限に対処するため,ビデオLMMの時間的接地能力を優先学習により向上させるための学習後フレームワークであるTPO(Temporal Preference Optimization)を提案する。
TPOは、特定のビデオセグメントに焦点を当てた局所的時間的グラウンドリングと、ビデオシーケンス全体の時間的依存関係をキャプチャする包括的時間的グラウンドという2つの粒度で、キュレートされた選好データセットを活用することで、モデルがより正確な時間的応答とより正確な時間的応答の区別を可能にするセルフトレーニングアプローチを採用している。
これらの選好データセットを最適化することにより、TPOは手作業による注釈付きデータへの依存を低減しつつ、時間的理解を大幅に強化する。
LongVideoBench, MLVU, Video-MMEの3つの長文ビデオ理解ベンチマークにおいて, TPOの有効性を実証する実験を行った。
特に、LLaVA-Video-TPOは、ビデオ-MMEベンチマークでトップ7Bモデルとしての地位を確立し、TPOが長期的ビデオ理解において時間的推論を進めるためのスケーラブルで効率的なソリューションとしての可能性を強調している。
プロジェクトページ: https://ruili33.github.io/tpo_website.com
関連論文リスト
- LongVU: Spatiotemporal Adaptive Compression for Long Video-Language Understanding [65.46303012350207]
LongVUは、長いビデオの視覚的詳細を保存しながら、ビデオトークンの数を減らす適応圧縮機構である。
DINOv2の機能を利用して、高い類似性を示す冗長なフレームを削除します。
時間的依存関係に基づいて,フレーム間の空間トークン削減を行う。
論文 参考訳(メタデータ) (2024-10-22T21:21:37Z) - Grounded-VideoLLM: Sharpening Fine-grained Temporal Grounding in Video Large Language Models [53.235170710385006]
我々は,特定の映像モーメントをきめ細かな方法で知覚・推論できる新しいビデオLLMであるGrounded-VideoLLMを紹介した。
我々は,(1)フレーム間の関係を符号化する追加の時間的ストリームと(2)特定の時間的知識に富んだ離散的な時間的トークンを組み込むことで,モデルを洗練する。
実験では, 時間文の接地, ビデオキャプションの密接化, ビデオQAの接地といった, きめ細かい接地作業に優れていた。
論文 参考訳(メタデータ) (2024-10-04T10:04:37Z) - Direct Preference Optimization of Video Large Multimodal Models from Language Model Reward [118.65089648651308]
本稿では,映像コンテンツのプロキシとして詳細な動画キャプションを利用する新しいフレームワークを提案する。
本稿では,DPOによる報酬の調整により,ビデオ質問応答(QA)タスクにおけるビデオLMMの性能が著しく向上することを示す。
論文 参考訳(メタデータ) (2024-04-01T17:28:16Z) - A Simple Recipe for Contrastively Pre-training Video-First Encoders Beyond 16 Frames [57.758863967770594]
我々は,大規模な画像テキストモデルを浅部時間融合によりビデオに転送する共通パラダイムを構築した。
1)標準ビデオデータセットにおけるビデオ言語アライメントの低下による空間能力の低下と,(2)処理可能なフレーム数のボトルネックとなるメモリ消費の増大である。
論文 参考訳(メタデータ) (2023-12-12T16:10:19Z) - Revisiting Kernel Temporal Segmentation as an Adaptive Tokenizer for
Long-form Video Understanding [57.917616284917756]
実世界のビデオは、しばしば数分間の長さであり、意味的に一貫した長さのセグメントがある。
長いビデオを処理するための一般的なアプローチは、一定時間の長さの一様にサンプリングされたクリップにショートフォームビデオモデルを適用することである。
このアプローチは、固定長のクリップがしばしば冗長または非形式的であるため、長いビデオの基本的な性質を無視する。
論文 参考訳(メタデータ) (2023-09-20T18:13:32Z) - UMMAFormer: A Universal Multimodal-adaptive Transformer Framework for
Temporal Forgery Localization [16.963092523737593]
本稿では,時間的フォージェリー・ローカライゼーション(TFL)のための新しいフレームワークを提案し,マルチモーダル適応によるフォルジェリー・セグメントの予測を行う。
提案手法は,Lav-DF,TVIL,Psyndなど,ベンチマークデータセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2023-08-28T08:20:30Z) - Revisiting the "Video" in Video-Language Understanding [56.15777956496518]
本稿では,ビデオ言語解析の新しいモデルであるアテンポラルプローブ(ATP)を提案する。
現在のビデオ言語ベンチマークの限界とポテンシャルを特徴付ける。
ATPをフルビデオレベル時間モデルに効果的に統合することで、効率と最先端の精度が向上することを示す。
論文 参考訳(メタデータ) (2022-06-03T17:57:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。