論文の概要: The Breeze 2 Herd of Models: Traditional Chinese LLMs Based on Llama with Vision-Aware and Function-Calling Capabilities
- arxiv url: http://arxiv.org/abs/2501.13921v2
- Date: Sat, 25 Jan 2025 00:53:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 10:33:07.364439
- Title: The Breeze 2 Herd of Models: Traditional Chinese LLMs Based on Llama with Vision-Aware and Function-Calling Capabilities
- Title(参考訳): ブリーズ2型モデル:視覚認識機能と機能ケア機能を備えたLlamaをベースとした中国の伝統的なLLM
- Authors: MediaTek Research, :, Chan-Jan Hsu, Chia-Sheng Liu, Meng-Hsi Chen, Muxi Chen, Po-Chun Hsu, Yi-Chang Chen, Da-Shan Shiu,
- Abstract要約: Breeze2は、高度なマルチモーダル言語モデルのスイートで、3Bおよび8Bパラメータ設定で利用可能である。
Llama 3.2 モデルファミリーを基盤として、我々は伝統的な中国語の言語と文化の遺産を強化するため、広範囲にわたるコーパスでブレゼ2の事前訓練を継続する。
- 参考スコア(独自算出の注目度): 13.051665523075187
- License:
- Abstract: Llama-Breeze2 (hereinafter referred to as Breeze2) is a suite of advanced multi-modal language models, available in 3B and 8B parameter configurations, specifically designed to enhance Traditional Chinese language representation. Building upon the Llama 3.2 model family, we continue the pre-training of Breeze2 on an extensive corpus to enhance the linguistic and cultural heritage of Traditional Chinese. In addition to language modeling capabilities, we significantly augment the models with function calling and vision understanding capabilities. At the time of this publication, as far as we are aware, absent reasoning-inducing prompts, Breeze2 are the strongest performing models in Traditional Chinese function calling and image understanding in its size class. The effectiveness of Breeze2 is benchmarked across various tasks, including Taiwan general knowledge, instruction-following, long context, function calling, and vision understanding. We are publicly releasing all Breeze2 models under the Llama 3.2 Community License. We also showcase the capabilities of the model running on mobile platform with a mobile application which we also open source.
- Abstract(参考訳): Llama-Breeze2(以下、Breeze2)は、3Bおよび8Bパラメータ設定で利用可能な高度なマルチモーダル言語モデルのスイートである。
Llama 3.2 モデルファミリーを基盤として、我々は伝統的な中国語の言語と文化の遺産を強化するため、広範囲にわたるコーパスでブレゼ2の事前訓練を継続する。
言語モデリング機能に加えて、関数呼び出しと視覚理解機能によってモデルを大幅に強化する。
この出版の時点では、私たちが知っている限りでは、Breeze2は伝統的な中国の機能呼び出しと画像理解のクラスで最強のパフォーマンスモデルである。
Breeze2の有効性は、台湾の一般知識、命令フォロー、長いコンテキスト、関数呼び出し、視覚理解など、様々なタスクでベンチマークされている。
Llama 3.2 Community Licenseの下で、すべてのBreeze2モデルを公開しています。
また、モバイルプラットフォーム上で動くモデルと、オープンソースで公開したモバイルアプリの機能についても紹介します。
関連論文リスト
- MERaLiON-TextLLM: Cross-Lingual Understanding of Large Language Models in Chinese, Indonesian, Malay, and Singlish [17.36441080071885]
本報告では,中国語,インドネシア語,マレー語,シングリッシュ語の理解と生成を改善するためのオープンソース言語モデルであるMERaLiON-TextLLMについて述べる。
提案手法は,これらの言語のベンチマークにおいて,公式のLlama-3モデルを上回る性能向上を実現する。
論文 参考訳(メタデータ) (2024-12-21T05:50:48Z) - The Llama 3 Herd of Models [356.6353861669039]
本稿ではLlama 3と呼ばれる新しい基礎モデルについて述べる。
Llama 3は、多言語性、コーディング、推論、ツール使用をサポートする言語モデルの群れである。
Llama 3は、GPT-4のような主要な言語モデルに匹敵する品質を多くのタスクで提供しています。
論文 参考訳(メタデータ) (2024-07-31T17:54:27Z) - MammothModa: Multi-Modal Large Language Model [17.98445238232718]
MammothModaは、Multi-modal large language model(MLLM)である。
MammothModaは、例えばLLaVAシリーズのような最先端のモデルを、ベルやホイッスルのない主要な実世界のビジュアル言語ベンチマークで一貫して上回っている。
論文 参考訳(メタデータ) (2024-06-26T09:17:27Z) - YAYI 2: Multilingual Open-Source Large Language Models [53.92832054643197]
我々は,300億のパラメータを持つベースモデルとチャットモデルを含むYAYI 2を提案する。
YAYI 2は、トレーニング済みのデータ処理パイプラインによってフィルタされた2.65兆のトークンを含む多言語コーパス上で、スクラッチから事前トレーニングされる。
ベースモデルは、数百万の指示による教師付き微調整と、人間のフィードバックからの強化学習によって、人間の価値と整合する。
論文 参考訳(メタデータ) (2023-12-22T17:34:47Z) - Ziya-Visual: Bilingual Large Vision-Language Model via Multi-Task
Instruction Tuning [27.544311403607786]
バイリンガルな大規模視覚言語モデル(LVLM)の集合であるZiya-Visualシリーズを紹介する。
我々のモデルは BLIP-2 から Querying Transformer を採用し,最適化手法のさらなる支援を探求している。
さらに,多モーダルシナリオにおけるGPT-4の理解能力を刺激し,収集した英語画像テキストデータセットを中国語に翻訳する。
論文 参考訳(メタデータ) (2023-10-12T09:39:17Z) - Baichuan 2: Open Large-scale Language Models [51.56361715162972]
我々は、70億と13億のパラメータを含む大規模な多言語言語モデルであるBaichuan 2を、2.6兆のトークン上でスクラッチからトレーニングする。
Baichuan 2は、MMLU、CMMLU、GSM8K、HumanEvalなどの公開ベンチマークで、同様のサイズの他のオープンソースモデルにマッチするか、より優れています。
論文 参考訳(メタデータ) (2023-09-19T04:13:22Z) - mPLUG-Owl: Modularization Empowers Large Language Models with Multimodality [95.76661165594884]
mPLUG-Owlは、大規模言語モデル(LLM)にマルチモーダル能力を持たせる訓練パラダイムである。
トレーニングパラダイムは、LLMの助けを借りて視覚知識を学ぶ、画像とテキストの整列のための2段階の手法を含む。
実験の結果,本モデルは既存のマルチモーダルモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-04-27T13:27:01Z) - ABINet++: Autonomous, Bidirectional and Iterative Language Modeling for
Scene Text Spotting [121.11880210592497]
言語モデルの限られた能力は,1)暗黙的な言語モデリング,2)一方向の特徴表現,3)雑音入力を伴う言語モデルから生じる。
シーンテキストスポッティングのための自律的で双方向かつ反復的なABINet++を提案する。
論文 参考訳(メタデータ) (2022-11-19T03:50:33Z) - cViL: Cross-Lingual Training of Vision-Language Models using Knowledge
Distillation [6.381149074212897]
本稿では、英語のみの視覚言語モデルを用いて、対象言語に対する単言語モデルを訓練するパイプラインを提案する。
日本語とヒンディー語で大規模な視覚的質問応答データセットをリリースする。
我々のパイプラインは、それぞれ4.4%と13.4%の精度で現在の最先端モデルよりも優れています。
論文 参考訳(メタデータ) (2022-06-07T14:46:30Z) - UC2: Universal Cross-lingual Cross-modal Vision-and-Language
Pre-training [52.852163987208826]
UC2は、言語間クロスモーダル表現学習のための最初の機械翻訳拡張フレームワークである。
Masked Region-token Modeling (MRTM) と Visual Translation Language Modeling (VTLM) の2つの新しいプリトレーニングタスクを提案する。
提案手法は,英語タスクにおける単言語学習モデルと同等の性能を維持しつつ,多種多様な非英語ベンチマークで新たな最先端を実現する。
論文 参考訳(メタデータ) (2021-04-01T08:30:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。