論文の概要: Triplet Synthesis For Enhancing Composed Image Retrieval via Counterfactual Image Generation
- arxiv url: http://arxiv.org/abs/2501.13968v1
- Date: Wed, 22 Jan 2025 07:18:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:57:26.984403
- Title: Triplet Synthesis For Enhancing Composed Image Retrieval via Counterfactual Image Generation
- Title(参考訳): 逆画像生成による合成画像検索を支援するトリプルト合成
- Authors: Kenta Uesugi, Naoki Saito, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama,
- Abstract要約: Composed Image Retrieval (CIR)は、大規模な視覚データの管理とアクセスに有効な手段を提供する。
本稿では, 対実画像生成を利用した新しい三重項合成法を提案する。
- 参考スコア(独自算出の注目度): 38.091197064787565
- License:
- Abstract: Composed Image Retrieval (CIR) provides an effective way to manage and access large-scale visual data. Construction of the CIR model utilizes triplets that consist of a reference image, modification text describing desired changes, and a target image that reflects these changes. For effectively training CIR models, extensive manual annotation to construct high-quality training datasets, which can be time-consuming and labor-intensive, is required. To deal with this problem, this paper proposes a novel triplet synthesis method by leveraging counterfactual image generation. By controlling visual feature modifications via counterfactual image generation, our approach automatically generates diverse training triplets without any manual intervention. This approach facilitates the creation of larger and more expressive datasets, leading to the improvement of CIR model's performance.
- Abstract(参考訳): Composed Image Retrieval (CIR)は、大規模な視覚データの管理とアクセスに有効な手段を提供する。
CIRモデルの構築には、参照画像と、所望の変更を記述した修正テキストと、これらの変更を反映したターゲット画像からなるトリプルを使用する。
CIRモデルを効果的にトレーニングするには、時間を要する労働集約的な高品質なトレーニングデータセットを構築するための広範な手動アノテーションが必要である。
この問題に対処するために, 対実画像生成を利用した新しい三重項合成法を提案する。
対物画像生成による視覚的特徴変化を制御することにより,手動による介入を伴わずに,多様なトレーニングトレーレットを自動生成する。
このアプローチにより、より大きく表現力のあるデータセットの作成が容易になり、CIRモデルのパフォーマンスが向上する。
関連論文リスト
- Can We Generate Images with CoT? Let's Verify and Reinforce Image Generation Step by Step [77.86514804787622]
CoT(Chain-of-Thought)推論は、複雑な理解タスクに取り組むために大規模なモデルで広く研究されている。
自己回帰画像生成を促進するために,CoT推論の可能性について,初めて包括的調査を行った。
本稿では,自動回帰画像生成に特化したPARMとPARM++を提案する。
論文 参考訳(メタデータ) (2025-01-23T18:59:43Z) - GraPE: A Generate-Plan-Edit Framework for Compositional T2I Synthesis [10.47359822447001]
本稿では,複雑な多段階生成のタスクを3段階に分解する,T2I合成の代替パラダイムを提案する。
提案手法は,モジュール性が高く,トレーニングが自由であり,画像生成モデルと編集モデルの組み合わせに対して適用可能であるという事実から,その強みを導出する。
論文 参考訳(メタデータ) (2024-12-08T22:29:56Z) - Compositional Image Retrieval via Instruction-Aware Contrastive Learning [40.54022628032561]
Composed Image Retrieval (CIR)は、テキストとペアリングした画像の合成クエリに基づいてターゲットイメージを検索する。
実際には、下流タスクにおけるアノテートデータの不足のため、ゼロショットCIR(ZS-CIR)が望ましい。
命令調整型マルチモーダルLLM(MLLM)を用いて合成表現を生成する新しい埋め込み手法を提案する。
論文 参考訳(メタデータ) (2024-12-07T22:46:52Z) - Visual Delta Generator with Large Multi-modal Models for Semi-supervised Composed Image Retrieval [50.72924579220149]
Composed Image Retrieval (CIR)は、提供されるテキスト修正に基づいて、クエリに似たイメージを取得するタスクである。
現在の技術は、基準画像、テキスト、ターゲット画像のラベル付き三重項を用いたCIRモデルの教師あり学習に依存している。
本稿では,参照とその関連対象画像を補助データとして検索する半教師付きCIR手法を提案する。
論文 参考訳(メタデータ) (2024-04-23T21:00:22Z) - Training-free Zero-shot Composed Image Retrieval with Local Concept Reranking [34.31345844296072]
合成画像検索は、参照画像と対応する修正テキストの合成クエリを通して、ギャラリー画像から興味のある画像を検索しようとする。
現在の構成画像検索手法の多くは、参照画像、修正テキスト、対応するターゲット画像からなるコストのかかる3重化データセットのトレーニングに対する教師付き学習アプローチに従っている。
そこで本研究では,学習不要なゼロショット合成画像検索手法を提案する。
論文 参考訳(メタデータ) (2023-12-14T13:31:01Z) - Zero-shot Composed Text-Image Retrieval [72.43790281036584]
合成画像検索(CIR)の問題点を考察する。
テキストや画像などのマルチモーダル情報を融合し、クエリにマッチする画像を正確に検索し、ユーザの表現能力を拡張できるモデルをトレーニングすることを目的としている。
論文 参考訳(メタデータ) (2023-06-12T17:56:01Z) - StraIT: Non-autoregressive Generation with Stratified Image Transformer [63.158996766036736]
Stratified Image Transformer(StraIT)は、純粋な非自己回帰(NAR)生成モデルである。
実験の結果,StraIT は NAR 生成を著しく改善し,既存の DM および AR 手法より優れていた。
論文 参考訳(メタデータ) (2023-03-01T18:59:33Z) - A Generic Approach for Enhancing GANs by Regularized Latent Optimization [79.00740660219256]
本稿では,事前学習したGANを効果的かつシームレスに拡張できる,エミュレーティブモデル推論と呼ばれる汎用フレームワークを提案する。
我々の基本的な考え方は、ワッサーシュタイン勾配流法を用いて与えられた要求に対する最適潜時分布を効率的に推算することである。
論文 参考訳(メタデータ) (2021-12-07T05:22:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。