論文の概要: Framework for Progressive Knowledge Fusion in Large Language Models Through Structured Conceptual Redundancy Analysis
- arxiv url: http://arxiv.org/abs/2501.13999v1
- Date: Thu, 23 Jan 2025 11:34:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:58:28.352789
- Title: Framework for Progressive Knowledge Fusion in Large Language Models Through Structured Conceptual Redundancy Analysis
- Title(参考訳): 構造的概念冗長解析による大規模言語モデルにおける進化的知識融合のためのフレームワーク
- Authors: Joseph Sakau, Evander Kozlowski, Roderick Thistledown, Basil Steinberger,
- Abstract要約: 大規模モデルにおける潜在知識の組織化は、重なり合う表現に対処し、文脈的精度を最適化する際、ユニークな課題を生じさせる。
高度なクラスタリング技術と動的しきい値設定により,これらの冗長性を再構築するフレームワークが提案された。
評価の結果、メモリ効率が向上し、推論時間が短縮され、解釈可能性を高める潜在知識クラスタのアライメントが向上した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The organization of latent knowledge within large-scale models poses unique challenges when addressing overlapping representations and optimizing contextual accuracy. Conceptual redundancies embedded across layers often result in inefficiencies that affect both computational demands and task-specific outcomes. A framework was proposed to restructure these redundancies through advanced clustering techniques and dynamic thresholding, ensuring that critical semantic relationships are preserved while removing unnecessary overlaps. Evaluations revealed improved memory efficiency and faster inference times, alongside better alignment in latent knowledge clusters that enhanced interpretability. Improvements in error rates and adversarial robustness suggest that restructuring redundancies has broader implications for increasing model reliability across diverse applications. Comparative analyses highlighted reductions in resource consumption and notable gains in performance, particularly in translation and summarization tasks. Energy metrics demonstrated significant savings during training phases, further validating the practicality of the approach for real-world deployments. Representational fidelity was also enhanced, with latent space evaluations indicating better cluster alignment and higher semantic consistency. The methodology bridges a key gap in model optimization through directly addressing redundancies at the structural level. Its application opens avenues for scalable, efficient, and contextually aware systems that can adapt to complex, domain-specific tasks without compromising on performance.
- Abstract(参考訳): 大規模モデルにおける潜在知識の組織化は、重なり合う表現に対処し、文脈的精度を最適化する際、ユニークな課題を生じさせる。
層に埋め込まれた概念的冗長性はしばしば計算要求とタスク固有の結果の両方に影響を与える非効率性をもたらす。
高度なクラスタリング技術と動的しきい値設定によってこれらの冗長性を再構築するフレームワークが提案され、不要な重複を取り除き、重要なセマンティックな関係を保つことが保証された。
評価の結果、メモリ効率が向上し、推論時間が短縮され、解釈可能性を高める潜在知識クラスタのアライメントが向上した。
誤り率と対向ロバスト性の改善は、冗長性の再構築が様々なアプリケーションにおけるモデルの信頼性向上により大きな影響を与えることを示唆している。
比較分析では、特に翻訳や要約作業において、資源消費の削減とパフォーマンスの顕著な向上が強調された。
エネルギーメトリクスは、トレーニング期間中に大幅な節約を示し、実際の展開のためのアプローチの実用性をさらに検証した。
表現の忠実性も向上し、より優れたクラスタアライメントとより高度なセマンティック一貫性を示す潜在空間評価が行われた。
この方法論は、構造レベルでの冗長性に直接対処することで、モデルの最適化において重要なギャップを埋める。
そのアプリケーションは、パフォーマンスを損なうことなく、複雑でドメイン固有のタスクに適応できる、スケーラブルで効率的でコンテキスト対応のシステムのために、道を開きます。
関連論文リスト
- Learning-to-Defer for Extractive Question Answering [3.6787328174619254]
質問応答の文脈で言語モデルを再訓練することなく、人間の専門家や大規模モデルへの選択的推論を可能にすることにより、意思決定を強化する2段階の学習・判断機構を適応的に導入する。
その結果,最小限のクエリを遅延させることで,計算効率を保ちながら,より大規模なクエリに匹敵する性能を実現することができた。
論文 参考訳(メタデータ) (2024-10-21T08:21:00Z) - Improving Network Interpretability via Explanation Consistency Evaluation [56.14036428778861]
本稿では、より説明可能なアクティベーションヒートマップを取得し、同時にモデル性能を向上させるフレームワークを提案する。
具体的には、モデル学習において、トレーニングサンプルを適応的に重み付けするために、新しいメトリクス、すなわち説明整合性を導入する。
そこで,本フレームワークは,これらのトレーニングサンプルに深い注意を払ってモデル学習を促進する。
論文 参考訳(メタデータ) (2024-08-08T17:20:08Z) - Investigating the Role of Instruction Variety and Task Difficulty in Robotic Manipulation Tasks [50.75902473813379]
本研究は、そのようなモデルの一般化能力における命令と入力の役割を体系的に検証する包括的評価フレームワークを導入する。
提案フレームワークは,極度の命令摂動に対するマルチモーダルモデルのレジリエンスと,観測的変化に対する脆弱性を明らかにする。
論文 参考訳(メタデータ) (2024-07-04T14:36:49Z) - Enhancing Retrieval-Augmented LMs with a Two-stage Consistency Learning Compressor [4.35807211471107]
本研究では,検索強化言語モデルにおける検索情報圧縮のための2段階一貫性学習手法を提案する。
提案手法は複数のデータセットにまたがって実験的に検証され,質問応答タスクの精度と効率が顕著に向上したことを示す。
論文 参考訳(メタデータ) (2024-06-04T12:43:23Z) - LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
本稿では,自己注意ネットワークのためのパラメータ効率の高いディープアンサンブル手法であるLoRA-Ensembleを紹介する。
全メンバー間で重みを共有できる1つの事前学習型自己注意ネットワークを利用することで、注意投影のために、メンバー固有の低ランク行列を訓練する。
提案手法は明示的なアンサンブルよりも優れたキャリブレーションを示し,様々な予測タスクやデータセットに対して類似あるいは良好な精度を実現する。
論文 参考訳(メタデータ) (2024-05-23T11:10:32Z) - Learning to Generate Training Datasets for Robust Semantic Segmentation [37.9308918593436]
セマンティックセグメンテーション手法の堅牢性を改善するための新しい手法を提案する。
我々は,現実的で可視な摂動画像を生成するために,新しい条件付き生成対向ネットワークであるRobustaを設計した。
我々の結果は、このアプローチが安全クリティカルなアプリケーションに有用である可能性を示唆している。
論文 参考訳(メタデータ) (2023-08-01T10:02:26Z) - Learning Prompt-Enhanced Context Features for Weakly-Supervised Video
Anomaly Detection [37.99031842449251]
弱い監督下での映像異常検出は重大な課題を呈する。
本稿では,効率的なコンテキストモデリングとセマンティック識別性の向上に焦点をあてた,弱教師付き異常検出フレームワークを提案する。
提案手法は,特定の異常なサブクラスの検出精度を大幅に向上させ,その実用的価値と有効性を裏付けるものである。
論文 参考訳(メタデータ) (2023-06-26T06:45:16Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Understanding and Constructing Latent Modality Structures in Multi-modal
Representation Learning [53.68371566336254]
優れたパフォーマンスの鍵は、完全なモダリティアライメントではなく、有意義な潜在モダリティ構造にある、と我々は主張する。
具体的には,1)モダリティ内正規化のための深い特徴分離損失,2)モダリティ間正規化のためのブラウン橋損失,3)モダリティ内正規化およびモダリティ間正規化のための幾何学的整合損失を設計する。
論文 参考訳(メタデータ) (2023-03-10T14:38:49Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。