ME-CPT: Multi-Task Enhanced Cross-Temporal Point Transformer for Urban 3D Change Detection
- URL: http://arxiv.org/abs/2501.14004v2
- Date: Wed, 19 Feb 2025 05:03:35 GMT
- Title: ME-CPT: Multi-Task Enhanced Cross-Temporal Point Transformer for Urban 3D Change Detection
- Authors: Luqi Zhang, Haiping Wang, Chong Liu, Zhen Dong, Bisheng Yang,
- Abstract summary: By utilizing multi-temporal ALS point clouds, semantic changes in urban area can be captured.
Existing 3D change detection methods struggle to efficiently extract multi-class semantic information and change features.
We propose the Multi-task Enhanced Cross-temporal Point Transformer (ME-CPT) network.
- Score: 10.15947374827254
- License:
- Abstract: The point clouds collected by the Airborne Laser Scanning (ALS) system provide accurate 3D information of urban land covers. By utilizing multi-temporal ALS point clouds, semantic changes in urban area can be captured, demonstrating significant potential in urban planning, emergency management, and infrastructure maintenance. Existing 3D change detection methods struggle to efficiently extract multi-class semantic information and change features, still facing the following challenges: (1) the difficulty of accurately modeling cross-temporal point clouds spatial relationships for effective change feature extraction; (2) class imbalance of change samples which hinders distinguishability of semantic features; (3) the lack of real-world datasets for 3D semantic change detection. To resolve these challenges, we propose the Multi-task Enhanced Cross-temporal Point Transformer (ME-CPT) network. ME-CPT establishes spatiotemporal correspondences between point cloud across different epochs and employs attention mechanisms to jointly extract semantic change features, facilitating information exchange and change comparison. Additionally, we incorporate a semantic segmentation task and through the multi-task training strategy, further enhance the distinguishability of semantic features, reducing the impact of class imbalance in change types. Moreover, we release a 22.5 $km^2$ 3D semantic change detection dataset, offering diverse scenes for comprehensive evaluation. Experiments on multiple datasets show that the proposed MT-CPT achieves superior performance compared to existing state-of-the-art methods. The source code and dataset will be released upon acceptance at https://github.com/zhangluqi0209/ME-CPT.
Related papers
- Point Cloud Understanding via Attention-Driven Contrastive Learning [64.65145700121442]
Transformer-based models have advanced point cloud understanding by leveraging self-attention mechanisms.
PointACL is an attention-driven contrastive learning framework designed to address these limitations.
Our method employs an attention-driven dynamic masking strategy that guides the model to focus on under-attended regions.
arXiv Detail & Related papers (2024-11-22T05:41:00Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - Continuous Urban Change Detection from Satellite Image Time Series with Temporal Feature Refinement and Multi-Task Integration [5.095834019284525]
We propose a continuous urban change detection method that identifies changes in each consecutive image pair of a satellite image time series (SITS)
Specifically, we propose a temporal feature refinement (TFR) module that utilizes self-attention to improve ConvNet-based multi-temporal building representations.
The proposed method effectively identifies urban changes based on high-resolution SITS acquired by the PlanetScope constellation.
arXiv Detail & Related papers (2024-06-25T10:53:57Z) - A Late-Stage Bitemporal Feature Fusion Network for Semantic Change Detection [32.112311027857636]
We propose a novel late-stage bitemporal feature fusion network to address the issue of semantic change detection.
Specifically, we propose local global attentional aggregation module to strengthen feature fusion, and propose local global context enhancement module to highlight pivotal semantics.
Our proposed model achieves new state-of-the-art performance on both datasets.
arXiv Detail & Related papers (2024-06-15T16:02:10Z) - ChangeBind: A Hybrid Change Encoder for Remote Sensing Change Detection [16.62779899494721]
Change detection (CD) is a fundamental task in remote sensing (RS) which aims to detect the semantic changes between the same geographical regions at different time stamps.
We propose an effective Siamese-based framework to encode the semantic changes occurring in the bi-temporal RS images.
arXiv Detail & Related papers (2024-04-26T17:47:14Z) - Transformer-based Multimodal Change Detection with Multitask Consistency Constraints [10.906283981247796]
Current change detection methods struggle with the multitask conflicts between semantic and height change detection tasks.
We propose an efficient Transformer-based network that learns shared representation between cross-dimensional inputs through cross-attention.
Compared to five state-of-the-art change detection methods, our model demonstrates consistent multitask superiority in terms of semantic and height change detection.
arXiv Detail & Related papers (2023-10-13T17:38:45Z) - Irregular Change Detection in Sparse Bi-Temporal Point Clouds using
Learned Place Recognition Descriptors and Point-to-Voxel Comparison [0.0]
This article proposes an innovative approach for change detection in 3D point clouds.
It uses deep learned place recognition descriptors and irregular object extraction based on voxel-to-point comparison.
The proposed method was successfully evaluated in real-world field experiments.
arXiv Detail & Related papers (2023-06-27T12:22:25Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - Geometry-Contrastive Transformer for Generalized 3D Pose Transfer [95.56457218144983]
The intuition of this work is to perceive the geometric inconsistency between the given meshes with the powerful self-attention mechanism.
We propose a novel geometry-contrastive Transformer that has an efficient 3D structured perceiving ability to the global geometric inconsistencies.
We present a latent isometric regularization module together with a novel semi-synthesized dataset for the cross-dataset 3D pose transfer task.
arXiv Detail & Related papers (2021-12-14T13:14:24Z) - Improving Point Cloud Semantic Segmentation by Learning 3D Object
Detection [102.62963605429508]
Point cloud semantic segmentation plays an essential role in autonomous driving.
Current 3D semantic segmentation networks focus on convolutional architectures that perform great for well represented classes.
We propose a novel Aware 3D Semantic Detection (DASS) framework that explicitly leverages localization features from an auxiliary 3D object detection task.
arXiv Detail & Related papers (2020-09-22T14:17:40Z) - Segment as Points for Efficient Online Multi-Object Tracking and
Segmentation [66.03023110058464]
We propose a highly effective method for learning instance embeddings based on segments by converting the compact image representation to un-ordered 2D point cloud representation.
Our method generates a new tracking-by-points paradigm where discriminative instance embeddings are learned from randomly selected points rather than images.
The resulting online MOTS framework, named PointTrack, surpasses all the state-of-the-art methods by large margins.
arXiv Detail & Related papers (2020-07-03T08:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.