Scalable and Explainable Verification of Image-based Neural Network Controllers for Autonomous Vehicles
- URL: http://arxiv.org/abs/2501.14009v1
- Date: Thu, 23 Jan 2025 16:46:45 GMT
- Title: Scalable and Explainable Verification of Image-based Neural Network Controllers for Autonomous Vehicles
- Authors: Aditya Parameshwaran, Yue Wang,
- Abstract summary: Existing formal verification methods for image-based neural network controllers in autonomous vehicles often struggle with high-dimensional inputs, computational inefficiency, and a lack of explainability.<n>We propose textbfSEVIN, a framework that leverages a Variational Autoencoders (VAE) to encode high-dimensional images into a lower-dimensional, explainable latent space.<n>Our approach also incorporates robustness verification under real-world perturbations by augmenting the dataset and retraining the VAE to capture environmental variations.
- Score: 3.2540854278211864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing formal verification methods for image-based neural network controllers in autonomous vehicles often struggle with high-dimensional inputs, computational inefficiency, and a lack of explainability. These challenges make it difficult to ensure safety and reliability, as processing high-dimensional image data is computationally intensive and neural networks are typically treated as black boxes. To address these issues, we propose \textbf{SEVIN} (Scalable and Explainable Verification of Image-Based Neural Network Controllers), a framework that leverages a Variational Autoencoders (VAE) to encode high-dimensional images into a lower-dimensional, explainable latent space. By annotating latent variables with corresponding control actions, we generate convex polytopes that serve as structured input spaces for verification, significantly reducing computational complexity and enhancing scalability. Integrating the VAE's decoder with the neural network controller allows for formal and robustness verification using these explainable polytopes. Our approach also incorporates robustness verification under real-world perturbations by augmenting the dataset and retraining the VAE to capture environmental variations. Experimental results demonstrate that SEVIN achieves efficient and scalable verification while providing explainable insights into controller behavior, bridging the gap between formal verification techniques and practical applications in safety-critical systems.
Related papers
- DynRsl-VLM: Enhancing Autonomous Driving Perception with Dynamic Resolution Vision-Language Models [5.858709357808136]
Visual Question Answering (VQA) models execute multiple downsampling processes on image inputs to strike a balance between computational efficiency and model performance.
Downsampling can lead to an inadequate capture of distant or small objects such as pedestrians, road signs, or obstacles.
This loss of features negatively impacts an autonomous driving system's capacity to accurately perceive the environment.
arXiv Detail & Related papers (2025-03-14T10:19:24Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - Scaling #DNN-Verification Tools with Efficient Bound Propagation and
Parallel Computing [57.49021927832259]
Deep Neural Networks (DNNs) are powerful tools that have shown extraordinary results in many scenarios.
However, their intricate designs and lack of transparency raise safety concerns when applied in real-world applications.
Formal Verification (FV) of DNNs has emerged as a valuable solution to provide provable guarantees on the safety aspect.
arXiv Detail & Related papers (2023-12-10T13:51:25Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - A Proper Orthogonal Decomposition approach for parameters reduction of
Single Shot Detector networks [0.0]
We propose a dimensionality reduction framework based on Proper Orthogonal Decomposition, a classical model order reduction technique.
We have applied such framework to SSD300 architecture using PASCAL VOC dataset, demonstrating a reduction of the network dimension and a remarkable speedup in the fine-tuning of the network in a transfer learning context.
arXiv Detail & Related papers (2022-07-27T14:43:14Z) - Verifying Low-dimensional Input Neural Networks via Input Quantization [12.42030531015912]
This paper revisits the original problem of verifying ACAS Xu networks.
We propose to prepend an input quantization layer to the network.
Our technique can deliver exact verification results immune to floating-point error.
arXiv Detail & Related papers (2021-08-18T03:42:05Z) - Towards a Safety Case for Hardware Fault Tolerance in Convolutional
Neural Networks Using Activation Range Supervision [1.7968112116887602]
Convolutional neural networks (CNNs) have become an established part of numerous safety-critical computer vision applications.
We build a prototypical safety case for CNNs by demonstrating that range supervision represents a highly reliable fault detector.
We explore novel, non-uniform range restriction methods that effectively suppress the probability of silent data corruptions and uncorrectable errors.
arXiv Detail & Related papers (2021-08-16T11:13:55Z) - Verification of Image-based Neural Network Controllers Using Generative
Models [30.34898838361206]
We propose a method to train a generative adversarial network (GAN) to map states to plausible input images.
By concatenating the generator network with the control network, we obtain a network with a low-dimensional input space.
We apply our approach to provide safety guarantees for an image-based neural network controller for an autonomous aircraft taxi problem.
arXiv Detail & Related papers (2021-05-14T23:18:05Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - Generating Probabilistic Safety Guarantees for Neural Network
Controllers [30.34898838361206]
We use a dynamics model to determine the output properties that must hold for a neural network controller to operate safely.
We develop an adaptive verification approach to efficiently generate an overapproximation of the neural network policy.
We show that our method is able to generate meaningful probabilistic safety guarantees for aircraft collision avoidance neural networks.
arXiv Detail & Related papers (2021-03-01T18:48:21Z) - Learning to Learn Parameterized Classification Networks for Scalable
Input Images [76.44375136492827]
Convolutional Neural Networks (CNNs) do not have a predictable recognition behavior with respect to the input resolution change.
We employ meta learners to generate convolutional weights of main networks for various input scales.
We further utilize knowledge distillation on the fly over model predictions based on different input resolutions.
arXiv Detail & Related papers (2020-07-13T04:27:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.