論文の概要: Transfer Learning of Surrogate Models via Domain Affine Transformation Across Synthetic and Real-World Benchmarks
- arxiv url: http://arxiv.org/abs/2501.14012v1
- Date: Thu, 23 Jan 2025 18:44:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:57:57.565146
- Title: Transfer Learning of Surrogate Models via Domain Affine Transformation Across Synthetic and Real-World Benchmarks
- Title(参考訳): ドメインアフィン変換によるサロゲートモデルの合成および実世界ベンチマーク間の変換学習
- Authors: Shuaiqun Pan, Diederick Vermetten, Manuel López-Ibáñez, Thomas Bäck, Hao Wang,
- Abstract要約: 代理モデルはしばしば、現実世界のプロセスのコストのかかる実行のための効率的な代用として使われる。
本研究は、原関数から対象関数への非微分可能な代理モデルを転送することに焦点を当てる。
これらのドメインは未知のアフィン変換によって関連づけられていると仮定し、ターゲット上で評価された限られた量の転送データポイントのみを使用する。
- 参考スコア(独自算出の注目度): 4.515998639772672
- License:
- Abstract: Surrogate models are frequently employed as efficient substitutes for the costly execution of real-world processes. However, constructing a high-quality surrogate model often demands extensive data acquisition. A solution to this issue is to transfer pre-trained surrogate models for new tasks, provided that certain invariances exist between tasks. This study focuses on transferring non-differentiable surrogate models (e.g., random forest) from a source function to a target function, where we assume their domains are related by an unknown affine transformation, using only a limited amount of transfer data points evaluated on the target. Previous research attempts to tackle this challenge for differentiable models, e.g., Gaussian process regression, which minimizes the empirical loss on the transfer data by tuning the affine transformations. In this paper, we extend the previous work to the random forest model and assess its effectiveness on a widely-used artificial problem set - Black-Box Optimization Benchmark (BBOB) testbed, and on four real-world transfer learning problems. The results highlight the significant practical advantages of the proposed method, particularly in reducing both the data requirements and computational costs of training surrogate models for complex real-world scenarios.
- Abstract(参考訳): 代理モデルはしばしば、現実世界のプロセスのコストのかかる実行のための効率的な代用として使われる。
しかし、高品質なサロゲートモデルを構築するには、しばしば広範なデータ取得が必要である。
この問題の解決策は、タスク間にある種の不変性が存在することを前提として、新しいタスクに対する事前訓練されたサロゲートモデルを転送することである。
本研究では, 原関数から対象関数への非微分可能サロゲートモデル(例えば, ランダムフォレスト)の移動に着目し, 対象関数で評価された限られた量の転送データポイントのみを用いて, 未知のアフィン変換によってドメインが関連していると仮定する。
従来の研究では、アフィン変換をチューニングすることによって転送データに対する経験的損失を最小限に抑えるガウス過程回帰(英語版)のような微分可能なモデルに対して、この問題に取り組む試みがなされていた。
本稿では,従来の研究をランダムな森林モデルに拡張し,ブラックボックス最適化ベンチマーク(BBOB)テストベッドと4つの実世界移動学習問題において,その有効性を評価する。
以上の結果から,提案手法の重要な実用上の利点,特に複雑な実世界のシナリオを対象としたサロゲートモデルをトレーニングする際のデータ要件と計算コストの削減が浮き彫りにされた。
関連論文リスト
- Transfer Learning of Surrogate Models: Integrating Domain Warping and Affine Transformations [4.515998639772672]
サロゲートモデルは、計算的に要求される現実世界のプロセスに効率的な代替手段を提供する。
従来の研究では、微分可能および非微分可能サロゲートモデルの移動について研究されてきた。
本稿は、より広い範囲のトランスフォーメーションに対処することで、これまでの研究を拡張している。
論文 参考訳(メタデータ) (2025-01-30T13:46:48Z) - Enhancing Polynomial Chaos Expansion Based Surrogate Modeling using a
Novel Probabilistic Transfer Learning Strategy [2.980666177064344]
ブラックボックスシミュレーションでは、非侵入型PCEは一連のシミュレーション応答評価を用いてサロゲートを構築することができる。
そこで我々は,類似のPCEサロゲート構築タスクを通じて得られた知識を新たなサロゲート構築タスクに転送することで,伝達学習を活用することを提案する。
論文 参考訳(メタデータ) (2023-12-07T19:16:42Z) - Informative Data Mining for One-Shot Cross-Domain Semantic Segmentation [84.82153655786183]
Informative Data Mining (IDM) と呼ばれる新しいフレームワークを提案し、セマンティックセグメンテーションのための効率的なワンショットドメイン適応を実現する。
IDMは、最も情報性の高いサンプルを特定するために不確実性に基づく選択基準を提供し、迅速に適応し、冗長なトレーニングを減らす。
提案手法は,GTA5/SYNTHIAからCityscapesへの適応タスクにおいて,既存の手法より優れ,56.7%/55.4%の最先端のワンショット性能を実現している。
論文 参考訳(メタデータ) (2023-09-25T15:56:01Z) - Revisiting the Robustness of the Minimum Error Entropy Criterion: A
Transfer Learning Case Study [16.07380451502911]
本稿では,非ガウス雑音に対処する最小誤差エントロピー基準のロバスト性を再考する。
本稿では,分散シフトが一般的である実生活伝達学習回帰タスクの実現可能性と有用性について検討する。
論文 参考訳(メタデータ) (2023-07-17T15:38:11Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
我々は、ソースデータとターゲットデータに基づいて、暗黙の基盤となる表面表現を同時に学習する教師なし補助タスクを導入する。
両方のドメインが同じ遅延表現を共有しているため、モデルは2つのデータソース間の不一致を許容せざるを得ない。
実験の結果,本手法は実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-
論文 参考訳(メタデータ) (2023-04-06T17:36:23Z) - Towards Estimating Transferability using Hard Subsets [25.86053764521497]
HASTEは、ターゲットデータのより厳しいサブセットのみを用いて、ソースモデルの特定のターゲットタスクへの転送可能性を推定する新しい戦略である。
HASTEは既存の転送可能性測定値と組み合わせて信頼性を向上させることができることを示す。
複数のソースモデルアーキテクチャ、ターゲットデータセット、トランスファー学習タスクにまたがる実験結果から、HASTEの修正されたメトリクスは、一貫して、あるいは、アートトランスファービリティーメトリクスの状態と同等であることが示された。
論文 参考訳(メタデータ) (2023-01-17T14:50:18Z) - Transfer learning with affine model transformation [18.13383101189326]
本稿では,アフィンモデル転送と呼ばれる,伝達学習の一般的なクラスについて述べる。
アフィンモデル転送は、ニューラル特徴抽出器に基づく最も一般的な手順を含む、様々な既存手法を幅広く包含していることが示されている。
論文 参考訳(メタデータ) (2022-10-18T10:50:24Z) - Frustratingly Easy Transferability Estimation [64.42879325144439]
本稿では,TransRate という,シンプルで効率的かつ効果的な転送可能性尺度を提案する。
TransRateは、事前訓練されたモデルによって抽出された対象サンプルの特徴とそれらのラベルとの間の相互情報として、転送可能性を測定する。
10行のコードで並外れた単純さにもかかわらず、TransRateは、22の事前訓練されたモデルと16のダウンストリームタスクに対する広範囲な評価において、非常にうまく機能している。
論文 参考訳(メタデータ) (2021-06-17T10:27:52Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
本稿では,TRED(Target-Awareness Representation Disentanglement)の概念を取り入れた新しいトランスファー学習アルゴリズムを提案する。
TREDは、対象のタスクに関する関連する知識を元のソースモデルから切り離し、ターゲットモデルを微調整する際、レギュレータとして使用する。
各種実世界のデータセットを用いた実験により,本手法は標準微調整を平均2%以上安定的に改善することが示された。
論文 参考訳(メタデータ) (2020-10-16T17:45:08Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。