Distributed quantum error correction based on hyperbolic Floquet codes
- URL: http://arxiv.org/abs/2501.14029v1
- Date: Thu, 23 Jan 2025 19:00:07 GMT
- Title: Distributed quantum error correction based on hyperbolic Floquet codes
- Authors: Evan Sutcliffe, Bhargavi Jonnadula, Claire Le Gall, Alexandra E. Moylett, Coral M. Westoby,
- Abstract summary: We show that distributed hyperbolic Floquet codes offer good performance under local and non-local noise.
This shows that distributed quantum error correction is not only possible but efficiently realisable.
- Score: 39.58317527488534
- License:
- Abstract: Quantum computing offers significant speedups, but the large number of physical qubits required for quantum error correction introduces engineering challenges for a monolithic architecture. One solution is to distribute the logical quantum computation across multiple small quantum computers, with non-local operations enabled via distributed Bell states. Previous investigations of distributed quantum error correction have largely focused on the surface code, which offers good error suppression but poor encoding rates, with each surface code instance only able to encode a single logical qubit. In this work, we argue that hyperbolic Floquet codes are particularly well-suited to distributed quantum error correction for two reasons. Firstly, their hyperbolic structure enables a high number of logical qubits to be stored efficiently. Secondly, the fact that all measurements are between pairs of qubits means that each measurement only requires a single Bell state. Through simulations, we show that distributed hyperbolic Floquet codes offer good performance under local and non-local phenomenological noise. This shows that distributed quantum error correction is not only possible but efficiently realisable.
Related papers
- Quantum Error Correction near the Coding Theoretical Bound [0.0]
We present quantum error-correcting codes constructed from classical LDPC codes.
These codes approach the hashing bound while maintaining linear computational complexity in the number of physical qubits.
This result establishes a pathway toward realizing large-scale, fault-tolerant quantum computers.
arXiv Detail & Related papers (2024-12-30T18:48:54Z) - Experimental Demonstration of Logical Magic State Distillation [62.77974948443222]
We present the experimental realization of magic state distillation with logical qubits on a neutral-atom quantum computer.
Our approach makes use of a dynamically reconfigurable architecture to encode and perform quantum operations on many logical qubits in parallel.
arXiv Detail & Related papers (2024-12-19T18:38:46Z) - Maximum Likelihood Quantum Error Mitigation for Algorithms with a Single
Correct Output [5.601537787608725]
Quantum error mitigation is an important technique to reduce the impact of noise in quantum computers.
We propose a simple and effective mitigation scheme, qubit-wise majority vote, for quantum algorithms with a single correct output.
arXiv Detail & Related papers (2024-02-19T04:44:33Z) - Normal quantum channels and Markovian correlated two-qubit quantum
errors [77.34726150561087]
We study general normally'' distributed random unitary transformations.
On the one hand, a normal distribution induces a unital quantum channel.
On the other hand, the diffusive random walk defines a unital quantum process.
arXiv Detail & Related papers (2023-07-25T15:33:28Z) - Hybrid noise protection of logical qubits for universal quantum
computation [0.0]
We present a model of universal quantum computation that has many advantages over strategies that require a large overhead.
We separate collective noise from individual noises on physical qubits and use a decoherence-free subspace.
We are able to either use a steady global magnetic field or to devise a set of DD pulses that remove much of the remaining noise.
arXiv Detail & Related papers (2023-06-27T02:09:14Z) - Protecting Expressive Circuits with a Quantum Error Detection Code [0.0]
We develop a quantum error detection code for implementations on existing trapped-ion computers.
By encoding $k$ logical qubits into $k+2$ physical qubits, this code presents fault-tolerant state initialisation and syndrome measurement circuits.
arXiv Detail & Related papers (2022-11-12T16:46:35Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Testing a Quantum Error-Correcting Code on Various Platforms [5.0745290104790035]
We propose a simple quantum error-correcting code for the detected amplitude damping channel.
We implement the encoding, the channel, and the recovery on an optical platform, the IBM Q System, and a nuclear magnetic resonance system.
arXiv Detail & Related papers (2020-01-22T13:15:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.