Implicit Neural Surface Deformation with Explicit Velocity Fields
- URL: http://arxiv.org/abs/2501.14038v1
- Date: Thu, 23 Jan 2025 19:11:53 GMT
- Title: Implicit Neural Surface Deformation with Explicit Velocity Fields
- Authors: Lu Sang, Zehranaz Canfes, Dongliang Cao, Florian Bernard, Daniel Cremers,
- Abstract summary: We introduce the first unsupervised method that simultaneously predicts time-varying neural implicit surfaces and deformations between pairs of point clouds.<n>Our method is able to handle both rigid and non-rigid deformations without any intermediate shape supervision.
- Score: 47.610773635281085
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this work, we introduce the first unsupervised method that simultaneously predicts time-varying neural implicit surfaces and deformations between pairs of point clouds. We propose to model the point movement using an explicit velocity field and directly deform a time-varying implicit field using the modified level-set equation. This equation utilizes an iso-surface evolution with Eikonal constraints in a compact formulation, ensuring the integrity of the signed distance field. By applying a smooth, volume-preserving constraint to the velocity field, our method successfully recovers physically plausible intermediate shapes. Our method is able to handle both rigid and non-rigid deformations without any intermediate shape supervision. Our experimental results demonstrate that our method significantly outperforms existing works, delivering superior results in both quality and efficiency.
Related papers
- ARC-Flow : Articulated, Resolution-Agnostic, Correspondence-Free Matching and Interpolation of 3D Shapes Under Flow Fields [4.706075725469252]
This work presents a unified framework for the unsupervised prediction of physically plausibles between two 3D articulated shapes.
Interpolation is modelled as a diffeomorphic transformation using a smooth, time-varying flow field governed by Neural Ordinary Differential Equations (ODEs)
Correspondence is recovered using an efficient Varifold formulation, that is effective on high-fidelity surfaces with differing parameterisations.
arXiv Detail & Related papers (2025-03-04T13:28:05Z) - 4Deform: Neural Surface Deformation for Robust Shape Interpolation [47.47045870313048]
We develop a new approach to generate realistic intermediate shapes between non-rigidly deformed shapes in unstructured data.
Our method learns a continuous velocity field in Euclidean space and does not require intermediate-shape supervision during training.
For the first time, our method enables new applications like 4D Kinect sequence upsampling and real-world high-resolution mesh deformation.
arXiv Detail & Related papers (2025-02-27T15:47:49Z) - Event-Aided Time-to-Collision Estimation for Autonomous Driving [28.13397992839372]
We present a novel method that estimates the time to collision using a neuromorphic event-based camera.
The proposed algorithm consists of a two-step approach for efficient and accurate geometric model fitting on event data.
Experiments on both synthetic and real data demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-07-10T02:37:36Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
We propose a federated version of adaptive gradient methods, particularly AdaGrad and Adam, within the framework of over-the-air model training.
Our analysis shows that the AdaGrad-based training algorithm converges to a stationary point at the rate of $mathcalO( ln(T) / T 1 - frac1alpha ).
arXiv Detail & Related papers (2024-03-11T09:10:37Z) - DiffuSeq-v2: Bridging Discrete and Continuous Text Spaces for
Accelerated Seq2Seq Diffusion Models [58.450152413700586]
We introduce a soft absorbing state that facilitates the diffusion model in learning to reconstruct discrete mutations based on the underlying Gaussian space.
We employ state-of-the-art ODE solvers within the continuous space to expedite the sampling process.
Our proposed method effectively accelerates the training convergence by 4x and generates samples of similar quality 800x faster.
arXiv Detail & Related papers (2023-10-09T15:29:10Z) - Reduced Representation of Deformation Fields for Effective Non-rigid
Shape Matching [26.77241999731105]
We present a novel approach for computing correspondences between non-rigid objects by exploiting a reduced representation of deformation fields.
By letting the network learn deformation parameters at a sparse set of positions in space (nodes), we reconstruct the continuous deformation field in a closed-form with guaranteed smoothness.
Our model has high expressive power and is able to capture complex deformations.
arXiv Detail & Related papers (2022-11-26T16:11:17Z) - The Neural Network shifted-Proper Orthogonal Decomposition: a Machine
Learning Approach for Non-linear Reduction of Hyperbolic Equations [0.0]
In this work we approach the problem of automatically detecting the correct pre-processing transformation in a statistical learning framework.
The purely data-driven method allowed us to generalise the existing approaches of linear subspace manipulation to non-linear hyperbolic problems with unknown advection fields.
The proposed algorithm has been validated against simple test cases to benchmark its performances and later successfully applied to a multiphase simulation.
arXiv Detail & Related papers (2021-08-14T15:13:35Z) - Fast Gravitational Approach for Rigid Point Set Registration with
Ordinary Differential Equations [79.71184760864507]
This article introduces a new physics-based method for rigid point set alignment called Fast Gravitational Approach (FGA)
In FGA, the source and target point sets are interpreted as rigid particle swarms with masses interacting in a globally multiply-linked manner while moving in a simulated gravitational force field.
We show that the new method class has characteristics not found in previous alignment methods.
arXiv Detail & Related papers (2020-09-28T15:05:39Z) - Hamiltonian Dynamics for Real-World Shape Interpolation [66.47407593823208]
We revisit the classical problem of 3D shape and propose a novel, physically plausible approach based on Hamiltonian dynamics.
Our method yields exactly volume preserving intermediate shapes, avoids self-intersections and is scalable to high resolution scans.
arXiv Detail & Related papers (2020-04-10T18:38:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.