論文の概要: Efficient 2D CT Foundation Model for Contrast Phase Classification
- arxiv url: http://arxiv.org/abs/2501.14066v1
- Date: Thu, 23 Jan 2025 20:01:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:56:12.460727
- Title: Efficient 2D CT Foundation Model for Contrast Phase Classification
- Title(参考訳): コントラスト位相分類のための効率的な2次元CT基礎モデル
- Authors: Benjamin Hou, Tejas Sudharshan Mathai, Pritam Mukherjee, Xinya Wang, Ronald M. Summers, Zhiyong Lub,
- Abstract要約: 下流コントラスト位相分類のための2次元CTスライスから埋め込みを生成するための2次元基礎モデルを構築した。
モデルはVinDrマルチフェーズデータセットで検証され、WAW-TACEデータセットで外部検証された。
3D教師付きモデルと比較して、アプローチはより速くトレーニングされ、パフォーマンスが良く、ドメインシフトに対するロバスト性が向上した。
- 参考スコア(独自算出の注目度): 4.650290073034678
- License:
- Abstract: Purpose: The purpose of this study is to harness the efficiency of a 2D foundation model to develop a robust phase classifier that is resilient to domain shifts. Materials and Methods: This retrospective study utilized three public datasets from separate institutions. A 2D foundation model was trained on the DeepLesion dataset (mean age: 51.2, s.d.: 17.6; 2398 males) to generate embeddings from 2D CT slices for downstream contrast phase classification. The classifier was trained on the VinDr Multiphase dataset and externally validated on the WAW-TACE dataset. The 2D model was also compared to three 3D supervised models. Results: On the VinDr dataset (146 male, 63 female, 56 unidentified), the model achieved near-perfect AUROC scores and F1 scores of 99.2%, 94.2%, and 93.1% for non-contrast, arterial, and venous phases, respectively. The `Other' category scored lower (F1: 73.4%) due to combining multiple contrast phases into one class. On the WAW-TACE dataset (mean age: 66.1, s.d.: 10.0; 185 males), the model showed strong performance with AUROCs of 91.0% and 85.6%, and F1 scores of 87.3% and 74.1% for non-contrast and arterial phases. Venous phase performance was lower, with AUROC and F1 scores of 81.7% and 70.2% respectively, due to label mismatches. Compared to 3D supervised models, the approach trained faster, performed as well or better, and showed greater robustness to domain shifts. Conclusion: The robustness of the 2D Foundation model may be potentially useful for automation of hanging protocols and data orchestration for clinical deployment of AI algorithms.
- Abstract(参考訳): 目的: 本研究の目的は, 2次元基礎モデルの効率を利用して, ドメインシフトに耐性のある堅牢な位相分類器を開発することである。
資料と方法: この振り返り調査では、別々の機関の3つの公開データセットを使用した。
DeepLesionデータセット(平均年齢: 51.2, s.d.: 17.6; 2398 男性: 2398 )を用いて2D CTスライスから下流コントラスト位相分類のための埋め込みを生成する2D基盤モデルを訓練した。
分類器はVinDr Multiphaseデータセットでトレーニングされ、WAW-TACEデータセットで外部で検証された。
2Dモデルは3つの3D教師付きモデルと比較された。
結果: VinDrデータセット(男性146名,女性63名,未同定56名)では,非コントラスト,動脈,静脈相のAUROCスコアが99.2%,F1スコアが94.2%,非コントラスト,静脈相が93.1%であった。
その他のカテゴリーは、複数のコントラストフェーズを1つのクラスに組み合わせた結果、低い(F1:73.4%)。
WAW-TACEデータセット(平均年齢:66.1, s.d.: 10.0, 185人の男性)では、AUROCsが91.0%, 85.6%、F1スコアが87.3%, 74.1%であった。
AUROCとF1のスコアはそれぞれ81.7%と70.2%であった。
3D教師付きモデルと比較して、アプローチはより速くトレーニングされ、パフォーマンスが良く、ドメインシフトに対するロバスト性が向上した。
結論: 2D Foundationモデルの堅牢性は、ハングプロトコルの自動化やAIアルゴリズムの臨床的展開のためのデータオーケストレーションに有用である可能性がある。
関連論文リスト
- Multi-centric AI Model for Unruptured Intracranial Aneurysm Detection and Volumetric Segmentation in 3D TOF-MRI [6.397650339311053]
我々は3DTOF-MRIで未破裂脳動脈瘤(UICA)の検出と分節を併用したオープンソースのnnU-NetベースのAIモデルを開発した。
4つの異なるトレーニングデータセットが作成され、nnU-Netフレームワークがモデル開発に使用された。
一次モデルは85%の感度と0.23FP/ケースレートを示し、ADAM-challengeの勝者(61%)と、ADAMデータでトレーニングされたnnU-Net(51%)を感度で上回った。
論文 参考訳(メタデータ) (2024-08-30T08:57:04Z) - Comprehensive Multimodal Deep Learning Survival Prediction Enabled by a Transformer Architecture: A Multicenter Study in Glioblastoma [4.578027879885667]
本研究は,変圧器を用いた深層学習モデルにMR画像,臨床および分子病理学的データを統合することにより,グリオーマの生存率予測を改善することを目的とする。
このモデルは、自己教師付き学習技術を用いて、高次元MRI入力を効果的に符号化し、クロスアテンションを用いた非画像データと統合する。
論文 参考訳(メタデータ) (2024-05-21T17:44:48Z) - A Federated Learning Framework for Stenosis Detection [70.27581181445329]
本研究は,冠動脈造影画像(CA)の狭窄検出におけるFL(Federated Learning)の使用について検討した。
アンコナのOspedale Riuniti(イタリア)で取得した200人の患者1219枚の画像を含む2施設の異種データセットについて検討した。
データセット2には、文献で利用可能な90人の患者からの7492のシーケンシャルな画像が含まれている。
論文 参考訳(メタデータ) (2023-10-30T11:13:40Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Automated segmentation of 3-D body composition on computed tomography [0.0]
VAT,SAT,IMAT,SM,骨の5種類の異なる体組成を手動でアノテートした。
畳み込みニューラルネットワーク(CNN)の性能評価と評価に10倍のクロスバリデーション法が用いられた。
3つのCNNモデルの中で、UNetは5つのボディ構成を共同でセグメント化する上で、最高の全体的な性能を示した。
論文 参考訳(メタデータ) (2021-12-16T15:38:27Z) - Vision Transformers for femur fracture classification [59.99241204074268]
Vision Transformer (ViT) はテスト画像の83%を正確に予測することができた。
史上最大かつ最もリッチなデータセットを持つサブフラクチャーで良い結果が得られた。
論文 参考訳(メタデータ) (2021-08-07T10:12:42Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
深層学習(DL)分類モデルは、異なる国の3DCTデータセット上で、COVID-19陽性患者を特定するために訓練された。
我々は、データセットと72%の列車、8%の検証、20%のテストデータを組み合わせたDLベースの9つの同一分類モデルを訓練した。
複数のデータセットでトレーニングされ、トレーニングに使用されるデータセットの1つからテストセットで評価されたモデルは、よりよいパフォーマンスを示した。
論文 参考訳(メタデータ) (2021-02-18T21:14:52Z) - MSED: a multi-modal sleep event detection model for clinical sleep
analysis [62.997667081978825]
ポリソムノグラムで睡眠イベントを共同検出する,単一のディープニューラルネットワークアーキテクチャを設計した。
モデルの性能は,F1,精度,リコールスコア,および指標値と臨床値との相関で定量化した。
論文 参考訳(メタデータ) (2021-01-07T13:08:44Z) - Automatic sleep stage classification with deep residual networks in a
mixed-cohort setting [63.52264764099532]
我々は,大規模コホートの一般化性を評価するために,新しいディープニューラルネットワークモデルを開発した。
総合的な分類精度はトレーニングデータの分数を増やして向上した。
論文 参考訳(メタデータ) (2020-08-21T10:48:35Z) - Deep Learning to Quantify Pulmonary Edema in Chest Radiographs [7.121765928263759]
肺浮腫の重症度を胸部X線写真で分類する機械学習モデルを開発した。
深層学習モデルは、大きな胸部X線写真データセットで訓練された。
論文 参考訳(メタデータ) (2020-08-13T15:45:44Z) - Interpretable Machine Learning Model for Early Prediction of Mortality
in Elderly Patients with Multiple Organ Dysfunction Syndrome (MODS): a
Multicenter Retrospective Study and Cross Validation [9.808639780672156]
MODS患者は死亡リスクが高く予後不良である。
本研究は,MODS高齢者の早期死亡予測のための解釈可能・一般化可能なモデルを開発することを目的とする。
論文 参考訳(メタデータ) (2020-01-28T17:15:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。