Making Reliable and Flexible Decisions in Long-tailed Classification
- URL: http://arxiv.org/abs/2501.14090v1
- Date: Thu, 23 Jan 2025 20:50:12 GMT
- Title: Making Reliable and Flexible Decisions in Long-tailed Classification
- Authors: Bolian Li, Ruqi Zhang,
- Abstract summary: We introduce RF-DLC, a novel framework aimed at reliable predictions in long-tailed problems.
We propose an efficient variational optimization strategy for the decision risk objective.
In empirical evaluation, we design a new metric, False Head Rate, to quantify tail-sensitivity risk.
- Score: 10.764160559530849
- License:
- Abstract: Long-tailed classification is challenging due to its heavy imbalance in class probabilities. While existing methods often focus on overall accuracy or accuracy for tail classes, they overlook a critical aspect: certain types of errors can carry greater risks than others in real-world long-tailed problems. For example, misclassifying patients (a tail class) as healthy individuals (a head class) entails far more serious consequences than the reverse scenario. To address this critical issue, we introduce Making Reliable and Flexible Decisions in Long-tailed Classification (RF-DLC), a novel framework aimed at reliable predictions in long-tailed problems. Leveraging Bayesian Decision Theory, we introduce an integrated gain to seamlessly combine long-tailed data distributions and the decision-making procedure. We further propose an efficient variational optimization strategy for the decision risk objective. Our method adapts readily to diverse utility matrices, which can be designed for specific tasks, ensuring its flexibility for different problem settings. In empirical evaluation, we design a new metric, False Head Rate, to quantify tail-sensitivity risk, along with comprehensive experiments on multiple real-world tasks, including large-scale image classification and uncertainty quantification, to demonstrate the reliability and flexibility of our method.
Related papers
- Fragility-aware Classification for Understanding Risk and Improving Generalization [6.926253982569273]
We introduce the Fragility Index (FI), a novel metric that evaluates classification performance from a risk-averse perspective.
We derive exact reformulations for cross-entropy loss, hinge-type loss, and Lipschitz loss, and extend the approach to deep learning models.
arXiv Detail & Related papers (2025-02-18T16:44:03Z) - Stochastic Linear Bandits with Latent Heterogeneity [8.981251210938787]
We propose a novel latent heterogeneous bandit framework that explicitly models this unobserved heterogeneity in customer responses.
Our methodology introduces an innovative algorithm that simultaneously learns latent group memberships and group-specific reward functions.
arXiv Detail & Related papers (2025-02-01T13:02:21Z) - Data-Adaptive Tradeoffs among Multiple Risks in Distribution-Free Prediction [55.77015419028725]
We develop methods that permit valid control of risk when threshold and tradeoff parameters are chosen adaptively.
Our methodology supports monotone and nearly-monotone risks, but otherwise makes no distributional assumptions.
arXiv Detail & Related papers (2024-03-28T17:28:06Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Neural Collapse Terminus: A Unified Solution for Class Incremental
Learning and Its Variants [166.916517335816]
In this paper, we offer a unified solution to the misalignment dilemma in the three tasks.
We propose neural collapse terminus that is a fixed structure with the maximal equiangular inter-class separation for the whole label space.
Our method holds the neural collapse optimality in an incremental fashion regardless of data imbalance or data scarcity.
arXiv Detail & Related papers (2023-08-03T13:09:59Z) - Long-tailed Classification from a Bayesian-decision-theory Perspective [6.599344783327054]
Long-tailed classification poses a challenge due to its heavy imbalance in class probabilities and tail-sensitivity risks with asymmetric misprediction costs.
Recent attempts have used re-balancing loss and ensemble methods, but they are largely and depend heavily on empirical results, lacking theoretical explanation.
This paper presents a general and principled framework from a Bayesian-decision-theory perspective, which unifies existing techniques including re-balancing and ensemble methods.
arXiv Detail & Related papers (2023-03-10T16:53:51Z) - RISE: Robust Individualized Decision Learning with Sensitive Variables [1.5293427903448025]
A naive baseline is to ignore sensitive variables in learning decision rules, leading to significant uncertainty and bias.
We propose a decision learning framework to incorporate sensitive variables during offline training but not include them in the input of the learned decision rule during model deployment.
arXiv Detail & Related papers (2022-11-12T04:31:38Z) - Provable tradeoffs in adversarially robust classification [96.48180210364893]
We develop and leverage new tools, including recent breakthroughs from probability theory on robust isoperimetry.
Our results reveal fundamental tradeoffs between standard and robust accuracy that grow when data is imbalanced.
arXiv Detail & Related papers (2020-06-09T09:58:19Z) - Hidden Cost of Randomized Smoothing [72.93630656906599]
In this paper, we point out the side effects of current randomized smoothing.
Specifically, we articulate and prove two major points: 1) the decision boundaries of smoothed classifiers will shrink, resulting in disparity in class-wise accuracy; 2) applying noise augmentation in the training process does not necessarily resolve the shrinking issue due to the inconsistent learning objectives.
arXiv Detail & Related papers (2020-03-02T23:37:42Z) - Precise Tradeoffs in Adversarial Training for Linear Regression [55.764306209771405]
We provide a precise and comprehensive understanding of the role of adversarial training in the context of linear regression with Gaussian features.
We precisely characterize the standard/robust accuracy and the corresponding tradeoff achieved by a contemporary mini-max adversarial training approach.
Our theory for adversarial training algorithms also facilitates the rigorous study of how a variety of factors (size and quality of training data, model overparametrization etc.) affect the tradeoff between these two competing accuracies.
arXiv Detail & Related papers (2020-02-24T19:01:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.