Data-Adaptive Tradeoffs among Multiple Risks in Distribution-Free Prediction
- URL: http://arxiv.org/abs/2403.19605v1
- Date: Thu, 28 Mar 2024 17:28:06 GMT
- Title: Data-Adaptive Tradeoffs among Multiple Risks in Distribution-Free Prediction
- Authors: Drew T. Nguyen, Reese Pathak, Anastasios N. Angelopoulos, Stephen Bates, Michael I. Jordan,
- Abstract summary: We develop methods that permit valid control of risk when threshold and tradeoff parameters are chosen adaptively.
Our methodology supports monotone and nearly-monotone risks, but otherwise makes no distributional assumptions.
- Score: 55.77015419028725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decision-making pipelines are generally characterized by tradeoffs among various risk functions. It is often desirable to manage such tradeoffs in a data-adaptive manner. As we demonstrate, if this is done naively, state-of-the art uncertainty quantification methods can lead to significant violations of putative risk guarantees. To address this issue, we develop methods that permit valid control of risk when threshold and tradeoff parameters are chosen adaptively. Our methodology supports monotone and nearly-monotone risks, but otherwise makes no distributional assumptions. To illustrate the benefits of our approach, we carry out numerical experiments on synthetic data and the large-scale vision dataset MS-COCO.
Related papers
- Data-driven decision-making under uncertainty with entropic risk measure [5.407319151576265]
The entropic risk measure is widely used in high-stakes decision making to account for tail risks associated with an uncertain loss.
To debias the empirical entropic risk estimator, we propose a strongly consistent bootstrapping procedure.
We show that cross validation methods can result in significantly higher out-of-sample risk for the insurer if the bias in validation performance is not corrected for.
arXiv Detail & Related papers (2024-09-30T04:02:52Z) - Geometry-Aware Instrumental Variable Regression [56.16884466478886]
We propose a transport-based IV estimator that takes into account the geometry of the data manifold through data-derivative information.
We provide a simple plug-and-play implementation of our method that performs on par with related estimators in standard settings.
arXiv Detail & Related papers (2024-05-19T17:49:33Z) - Predictive Uncertainty Quantification via Risk Decompositions for Strictly Proper Scoring Rules [7.0549244915538765]
Uncertainty in predictive modeling often relies on ad hoc methods.
This paper introduces a theoretical approach to understanding uncertainty through statistical risks.
We show how to split pointwise risk into Bayes risk and excess risk.
arXiv Detail & Related papers (2024-02-16T14:40:22Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
We propose a new estimation method by actively de-noising the observed data.
By conducting a broad range of experiments, we demonstrate that our proposed approach provides a much closer approximation to the actual data uncertainty than the standard method.
arXiv Detail & Related papers (2023-12-16T14:59:11Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Non-Exchangeable Conformal Risk Control [12.381447108228635]
Split conformal prediction has recently sparked great interest due to its ability to provide formally guaranteed uncertainty sets or intervals.
We propose non-exchangeable conformal risk control, which allows controlling the expected value of any monotone loss function when the data is not exchangeable.
Our framework is flexible, makes very few assumptions, and allows weighting the data based on its relevance for a given test example.
arXiv Detail & Related papers (2023-10-02T15:00:19Z) - Domain Generalization without Excess Empirical Risk [83.26052467843725]
A common approach is designing a data-driven surrogate penalty to capture generalization and minimize the empirical risk jointly with the penalty.
We argue that a significant failure mode of this recipe is an excess risk due to an erroneous penalty or hardness in joint optimization.
We present an approach that eliminates this problem. Instead of jointly minimizing empirical risk with the penalty, we minimize the penalty under the constraint of optimality of the empirical risk.
arXiv Detail & Related papers (2023-08-30T08:46:46Z) - Risk Consistent Multi-Class Learning from Label Proportions [64.0125322353281]
This study addresses a multiclass learning from label proportions (MCLLP) setting in which training instances are provided in bags.
Most existing MCLLP methods impose bag-wise constraints on the prediction of instances or assign them pseudo-labels.
A risk-consistent method is proposed for instance classification using the empirical risk minimization framework.
arXiv Detail & Related papers (2022-03-24T03:49:04Z) - Identifying Causal-Effect Inference Failure with Uncertainty-Aware
Models [41.53326337725239]
We introduce a practical approach for integrating uncertainty estimation into a class of state-of-the-art neural network methods.
We show that our methods enable us to deal gracefully with situations of "no-overlap", common in high-dimensional data.
We show that correctly modeling uncertainty can keep us from giving overconfident and potentially harmful recommendations.
arXiv Detail & Related papers (2020-07-01T00:37:41Z) - Deep Survival Machines: Fully Parametric Survival Regression and
Representation Learning for Censored Data with Competing Risks [14.928328404160299]
We describe a new approach to estimating relative risks in time-to-event prediction problems with censored data.
Our approach does not require making strong assumptions of constant proportional hazard of the underlying survival distribution.
This is the first work involving fully parametric estimation of survival times with competing risks in the presence of censoring.
arXiv Detail & Related papers (2020-03-02T20:21:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.