Improved subsample-and-aggregate via the private modified winsorized mean
- URL: http://arxiv.org/abs/2501.14095v1
- Date: Thu, 23 Jan 2025 21:03:40 GMT
- Title: Improved subsample-and-aggregate via the private modified winsorized mean
- Authors: Kelly Ramsay, Dylan Spicker,
- Abstract summary: We show that the modified winsorized mean is minimax optimal for several, large classes of distributions.
We consider the modified winsorized mean as the aggregator in subsample-and-aggregate.
- Score: 0.0
- License:
- Abstract: We develop a univariate, differentially private mean estimator, called the private modified winsorized mean designed to be used as the aggregator in subsample-and-aggregate. We demonstrate, via real data analysis, that common differentially private multivariate mean estimators may not perform well as the aggregator, even with a dataset with 8000 observations, motivating our developments. We show that the modified winsorized mean is minimax optimal for several, large classes of distributions, even under adversarial contamination. We also demonstrate that, empirically, the modified winsorized mean performs well compared to other private mean estimates. We consider the modified winsorized mean as the aggregator in subsample-and-aggregate, deriving a finite sample deviations bound for a subsample-and-aggregate estimate generated with the new aggregator. This result yields two important insights: (i) the optimal choice of subsamples depends on the bias of the estimator computed on the subsamples, and (ii) the rate of convergence of the subsample-and-aggregate estimator depends on the robustness of the estimator computed on the subsamples.
Related papers
- A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set [20.166217494056916]
We propose a principled approach to construct covariance estimators without imposing restrictive assumptions.
We show that our robust estimators are efficiently computable and consistent.
Numerical experiments based on synthetic and real data show that our robust estimators are competitive with state-of-the-art estimators.
arXiv Detail & Related papers (2024-05-30T15:01:18Z) - On diffusion-based generative models and their error bounds: The log-concave case with full convergence estimates [5.13323375365494]
We provide theoretical guarantees for the convergence behaviour of diffusion-based generative models under strongly log-concave data.
Our class of functions used for score estimation is made of Lipschitz continuous functions avoiding any Lipschitzness assumption on the score function.
This approach yields the best known convergence rate for our sampling algorithm.
arXiv Detail & Related papers (2023-11-22T18:40:45Z) - A Parameter-Free Two-Bit Covariance Estimator with Improved Operator Norm Error Rate [23.116373524718988]
We propose a new 2-bit covariance matrix estimator that simultaneously addresses both issues.
By employing dithering scales varying across entries, our estimator enjoys an improved operator norm error rate.
Our proposed method eliminates the need of any tuning parameter, as the dithering scales are entirely determined by the data.
arXiv Detail & Related papers (2023-08-30T14:31:24Z) - Detecting Adversarial Data by Probing Multiple Perturbations Using
Expected Perturbation Score [62.54911162109439]
Adversarial detection aims to determine whether a given sample is an adversarial one based on the discrepancy between natural and adversarial distributions.
We propose a new statistic called expected perturbation score (EPS), which is essentially the expected score of a sample after various perturbations.
We develop EPS-based maximum mean discrepancy (MMD) as a metric to measure the discrepancy between the test sample and natural samples.
arXiv Detail & Related papers (2023-05-25T13:14:58Z) - CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator [60.799183326613395]
We propose an unbiased estimator for categorical random variables based on multiple mutually negatively correlated (jointly antithetic) samples.
CARMS combines REINFORCE with copula based sampling to avoid duplicate samples and reduce its variance, while keeping the estimator unbiased using importance sampling.
We evaluate CARMS on several benchmark datasets on a generative modeling task, as well as a structured output prediction task, and find it to outperform competing methods including a strong self-control baseline.
arXiv Detail & Related papers (2021-10-26T20:14:30Z) - Unrolling Particles: Unsupervised Learning of Sampling Distributions [102.72972137287728]
Particle filtering is used to compute good nonlinear estimates of complex systems.
We show in simulations that the resulting particle filter yields good estimates in a wide range of scenarios.
arXiv Detail & Related papers (2021-10-06T16:58:34Z) - Optimal Off-Policy Evaluation from Multiple Logging Policies [77.62012545592233]
We study off-policy evaluation from multiple logging policies, each generating a dataset of fixed size, i.e., stratified sampling.
We find the OPE estimator for multiple loggers with minimum variance for any instance, i.e., the efficient one.
arXiv Detail & Related papers (2020-10-21T13:43:48Z) - Nonparametric Estimation of the Fisher Information and Its Applications [82.00720226775964]
This paper considers the problem of estimation of the Fisher information for location from a random sample of size $n$.
An estimator proposed by Bhattacharya is revisited and improved convergence rates are derived.
A new estimator, termed a clipped estimator, is proposed.
arXiv Detail & Related papers (2020-05-07T17:21:56Z) - Estimating Gradients for Discrete Random Variables by Sampling without
Replacement [93.09326095997336]
We derive an unbiased estimator for expectations over discrete random variables based on sampling without replacement.
We show that our estimator can be derived as the Rao-Blackwellization of three different estimators.
arXiv Detail & Related papers (2020-02-14T14:15:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.