Improving Value-based Process Verifier via Structural Prior Injection
- URL: http://arxiv.org/abs/2502.17498v1
- Date: Fri, 21 Feb 2025 07:57:59 GMT
- Title: Improving Value-based Process Verifier via Structural Prior Injection
- Authors: Zetian Sun, Dongfang Li, Baotian Hu, Jun Yu, Min Zhang,
- Abstract summary: We show that reasonable structural prior injection can improve the performance of value-based process verifiers for about 1$sim$2 points at little-to-no cost.<n>We also show that under different structural prior, the verifiers' performances vary greatly despite having the same optimal solution.
- Score: 30.07647106495661
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the Large Language Model(LLM) reasoning scenario, people often estimate state value via Monte Carlo sampling. Though Monte Carlo estimation is an elegant method with less inductive bias, noise and errors are inevitably introduced due to the limited sampling. To handle the problem, we inject the structural prior into the value representation and transfer the scalar value into the expectation of a pre-defined categorical distribution, representing the noise and errors from a distribution perspective. Specifically, by treating the result of Monte Carlo sampling as a single sample from the prior ground-truth Binomial distribution, we quantify the sampling error as the mismatch between posterior estimated distribution and ground-truth distribution, which is thus optimized via distribution selection optimization. We test the performance of value-based process verifiers on Best-of-N task and Beam search task. Compared with the scalar value representation, we show that reasonable structural prior injection induced by different objective functions or optimization methods can improve the performance of value-based process verifiers for about 1$\sim$2 points at little-to-no cost. We also show that under different structural prior, the verifiers' performances vary greatly despite having the same optimal solution, indicating the importance of reasonable structural prior injection.
Related papers
- Minimax Optimality of the Probability Flow ODE for Diffusion Models [8.15094483029656]
This work develops the first end-to-end theoretical framework for deterministic ODE-based samplers.
We propose a smooth regularized score estimator that simultaneously controls both the $L2$ score error and the associated mean Jacobian error.
We demonstrate that the resulting sampler achieves the minimax rate in total variation distance, modulo logarithmic factors.
arXiv Detail & Related papers (2025-03-12T17:51:29Z) - Direct Distributional Optimization for Provable Alignment of Diffusion Models [39.048284342436666]
We introduce a novel alignment method for diffusion models from distribution optimization perspectives.<n>We first formulate the problem as a generic regularized loss minimization over probability distributions.<n>We enable sampling from the learned distribution by approximating its score function via Doob's $h$-transform technique.
arXiv Detail & Related papers (2025-02-05T07:35:15Z) - Unveiling the Statistical Foundations of Chain-of-Thought Prompting Methods [59.779795063072655]
Chain-of-Thought (CoT) prompting and its variants have gained popularity as effective methods for solving multi-step reasoning problems.
We analyze CoT prompting from a statistical estimation perspective, providing a comprehensive characterization of its sample complexity.
arXiv Detail & Related papers (2024-08-25T04:07:18Z) - Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.
We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.
Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - Optimal Budgeted Rejection Sampling for Generative Models [54.050498411883495]
Rejection sampling methods have been proposed to improve the performance of discriminator-based generative models.
We first propose an Optimal Budgeted Rejection Sampling scheme that is provably optimal.
Second, we propose an end-to-end method that incorporates the sampling scheme into the training procedure to further enhance the model's overall performance.
arXiv Detail & Related papers (2023-11-01T11:52:41Z) - Moreau-Yoshida Variational Transport: A General Framework For Solving Regularized Distributional Optimization Problems [3.038642416291856]
We consider a general optimization problem of minimizing a composite objective functional defined over a class probability distributions.
We propose a novel method, dubbed as Moreau-Yoshida Variational Transport (MYVT), for solving the regularized distributional optimization problem.
arXiv Detail & Related papers (2023-07-31T01:14:42Z) - Scalable method for Bayesian experimental design without integrating
over posterior distribution [0.0]
We address the computational efficiency in solving the A-optimal Bayesian design of experiments problems.
A-optimality is a widely used and easy-to-interpret criterion for Bayesian experimental design.
This study presents a novel likelihood-free approach to the A-optimal experimental design.
arXiv Detail & Related papers (2023-06-30T12:40:43Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - Convergence for score-based generative modeling with polynomial
complexity [9.953088581242845]
We prove the first convergence guarantees for the core mechanic behind Score-based generative modeling.
Compared to previous works, we do not incur error that grows exponentially in time or that suffers from a curse of dimensionality.
We show that a predictor-corrector gives better convergence than using either portion alone.
arXiv Detail & Related papers (2022-06-13T14:57:35Z) - Unrolling Particles: Unsupervised Learning of Sampling Distributions [102.72972137287728]
Particle filtering is used to compute good nonlinear estimates of complex systems.
We show in simulations that the resulting particle filter yields good estimates in a wide range of scenarios.
arXiv Detail & Related papers (2021-10-06T16:58:34Z) - Distributionally Robust Bayesian Quadrature Optimization [60.383252534861136]
We study BQO under distributional uncertainty in which the underlying probability distribution is unknown except for a limited set of its i.i.d. samples.
A standard BQO approach maximizes the Monte Carlo estimate of the true expected objective given the fixed sample set.
We propose a novel posterior sampling based algorithm, namely distributionally robust BQO (DRBQO) for this purpose.
arXiv Detail & Related papers (2020-01-19T12:00:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.