VideoShield: Regulating Diffusion-based Video Generation Models via Watermarking
- URL: http://arxiv.org/abs/2501.14195v1
- Date: Fri, 24 Jan 2025 02:57:09 GMT
- Title: VideoShield: Regulating Diffusion-based Video Generation Models via Watermarking
- Authors: Runyi Hu, Jie Zhang, Yiming Li, Jiwei Li, Qing Guo, Han Qiu, Tianwei Zhang,
- Abstract summary: VideoShield is a novel watermarking framework for video generation models.
It embeds watermarks directly during video generation, eliminating the need for additional training.
Our method maps watermark bits to template bits, which are then used to generate watermarked noise.
- Score: 27.345134138673945
- License:
- Abstract: Artificial Intelligence Generated Content (AIGC) has advanced significantly, particularly with the development of video generation models such as text-to-video (T2V) models and image-to-video (I2V) models. However, like other AIGC types, video generation requires robust content control. A common approach is to embed watermarks, but most research has focused on images, with limited attention given to videos. Traditional methods, which embed watermarks frame-by-frame in a post-processing manner, often degrade video quality. In this paper, we propose VideoShield, a novel watermarking framework specifically designed for popular diffusion-based video generation models. Unlike post-processing methods, VideoShield embeds watermarks directly during video generation, eliminating the need for additional training. To ensure video integrity, we introduce a tamper localization feature that can detect changes both temporally (across frames) and spatially (within individual frames). Our method maps watermark bits to template bits, which are then used to generate watermarked noise during the denoising process. Using DDIM Inversion, we can reverse the video to its original watermarked noise, enabling straightforward watermark extraction. Additionally, template bits allow precise detection for potential temporal and spatial modification. Extensive experiments across various video models (both T2V and I2V models) demonstrate that our method effectively extracts watermarks and detects tamper without compromising video quality. Furthermore, we show that this approach is applicable to image generation models, enabling tamper detection in generated images as well. Codes and models are available at \href{https://github.com/hurunyi/VideoShield}{https://github.com/hurunyi/VideoShield}.
Related papers
- RoboSignature: Robust Signature and Watermarking on Network Attacks [0.5461938536945723]
We present a novel adversarial fine-tuning attack that disrupts the model's ability to embed the intended watermark.
Our findings emphasize the importance of anticipating and defending against potential vulnerabilities in generative systems.
arXiv Detail & Related papers (2024-12-22T04:36:27Z) - Video Seal: Open and Efficient Video Watermarking [47.40833588157406]
Video watermarking addresses challenges by embedding imperceptible signals into videos, allowing for identification.
Video Seal is a comprehensive framework for neural video watermarking and a competitive open-sourced model.
We present experimental results demonstrating the effectiveness of the approach in terms of speed, imperceptibility, and robustness.
arXiv Detail & Related papers (2024-12-12T17:41:49Z) - LVMark: Robust Watermark for latent video diffusion models [5.310978296852323]
We introduce a novel watermarking method called LVMark, which embeds watermarks into video diffusion models.
A key component of LVMark is a selective weight modulation strategy that efficiently embeds watermark messages into the video diffusion model.
Our approach is the first to highlight the potential of video-generative model watermarking as a valuable tool for enhancing the effectiveness of ownership protection in video-generative models.
arXiv Detail & Related papers (2024-12-12T09:57:20Z) - SleeperMark: Towards Robust Watermark against Fine-Tuning Text-to-image Diffusion Models [77.80595722480074]
SleeperMark is a novel framework designed to embed resilient watermarks into T2I diffusion models.
It guides the model to disentangle the watermark information from the semantic concepts it learns, allowing the model to retain the embedded watermark.
Our experiments demonstrate the effectiveness of SleeperMark across various types of diffusion models.
arXiv Detail & Related papers (2024-12-06T08:44:18Z) - Turns Out I'm Not Real: Towards Robust Detection of AI-Generated Videos [16.34393937800271]
generative models in creating high-quality videos have raised concerns about digital integrity and privacy vulnerabilities.
Recent works to combat Deepfakes videos have developed detectors that are highly accurate at identifying GAN-generated samples.
We propose a novel framework for detecting videos synthesized from multiple state-of-the-art (SOTA) generative models.
arXiv Detail & Related papers (2024-06-13T21:52:49Z) - StreamingT2V: Consistent, Dynamic, and Extendable Long Video Generation from Text [58.49820807662246]
We introduce StreamingT2V, an autoregressive approach for long video generation of 80, 240, 600, 1200 or more frames with smooth transitions.
Our code will be available at: https://github.com/Picsart-AI-Research/StreamingT2V.
arXiv Detail & Related papers (2024-03-21T18:27:29Z) - VGMShield: Mitigating Misuse of Video Generative Models [7.963591895964269]
We introduce VGMShield: a set of three straightforward but pioneering mitigations through the lifecycle of fake video generation.
We first try to understand whether there is uniqueness in generated videos and whether we can differentiate them from real videos.
Then, we investigate the textittracing problem, which maps a fake video back to a model that generates it.
arXiv Detail & Related papers (2024-02-20T16:39:23Z) - Tree-Ring Watermarks: Fingerprints for Diffusion Images that are
Invisible and Robust [55.91987293510401]
Watermarking the outputs of generative models is a crucial technique for tracing copyright and preventing potential harm from AI-generated content.
We introduce a novel technique called Tree-Ring Watermarking that robustly fingerprints diffusion model outputs.
Our watermark is semantically hidden in the image space and is far more robust than watermarking alternatives that are currently deployed.
arXiv Detail & Related papers (2023-05-31T17:00:31Z) - Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video
Generators [70.17041424896507]
Recent text-to-video generation approaches rely on computationally heavy training and require large-scale video datasets.
We propose a new task of zero-shot text-to-video generation using existing text-to-image synthesis methods.
Our method performs comparably or sometimes better than recent approaches, despite not being trained on additional video data.
arXiv Detail & Related papers (2023-03-23T17:01:59Z) - Deformable Sprites for Unsupervised Video Decomposition [66.73136214980309]
We represent each scene element as a emphDeformable Sprite consisting of three components.
The resulting decomposition allows for applications such as consistent video editing.
arXiv Detail & Related papers (2022-04-14T17:58:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.