Bi-directional Curriculum Learning for Graph Anomaly Detection: Dual Focus on Homogeneity and Heterogeneity
- URL: http://arxiv.org/abs/2501.14197v1
- Date: Fri, 24 Jan 2025 03:01:16 GMT
- Title: Bi-directional Curriculum Learning for Graph Anomaly Detection: Dual Focus on Homogeneity and Heterogeneity
- Authors: Yitong Hao, Enbo He, Yue Zhang, Guisheng Yin,
- Abstract summary: Graph anomaly detection (GAD) aims to identify nodes from a graph that are significantly different from normal patterns.
Most previous studies are model-driven, focusing on enhancing the detection effect by improving the model structure.
We introduce graph curriculum learning as a simple and effective plug-and-play module to optimize GAD methods.
- Score: 9.520967269079007
- License:
- Abstract: Graph anomaly detection (GAD) aims to identify nodes from a graph that are significantly different from normal patterns. Most previous studies are model-driven, focusing on enhancing the detection effect by improving the model structure. However, these approaches often treat all nodes equally, neglecting the different contributions of various nodes to the training. Therefore, we introduce graph curriculum learning as a simple and effective plug-and-play module to optimize GAD methods. The existing graph curriculum learning mainly focuses on the homogeneity of graphs and treats nodes with high homogeneity as easy nodes. In fact, GAD models can handle not only graph homogeneity but also heterogeneity, which leads to the unsuitability of these existing methods. To address this problem, we propose an innovative Bi-directional Curriculum Learning strategy (BCL), which considers nodes with higher and lower similarity to neighbor nodes as simple nodes in the direction of focusing on homogeneity and focusing on heterogeneity, respectively, and prioritizes their training. Extensive experiments show that BCL can be quickly integrated into existing detection processes and significantly improves the performance of ten GAD anomaly detection models on seven commonly used datasets.
Related papers
- A GAN Approach for Node Embedding in Heterogeneous Graphs Using Subgraph Sampling [33.50085646298074]
We propose a novel framework that combines Graph Neural Network (GNN) and Generative Adrial Network (GAN) to enhance classification for underrepresented node classes.
The framework incorporates an advanced edge generation and selection module, enabling the simultaneous creation of synthetic nodes and edges.
arXiv Detail & Related papers (2023-12-11T16:52:20Z) - Breaking the Entanglement of Homophily and Heterophily in
Semi-supervised Node Classification [25.831508778029097]
We introduce AMUD, which quantifies the relationship between node profiles and topology from a statistical perspective.
We also propose ADPA as a new directed graph learning paradigm for AMUD.
arXiv Detail & Related papers (2023-12-07T07:54:11Z) - Normality Learning-based Graph Anomaly Detection via Multi-Scale
Contrastive Learning [61.57383634677747]
Graph anomaly detection (GAD) has attracted increasing attention in machine learning and data mining.
Here, we propose a normality learning-based GAD framework via multi-scale contrastive learning networks (NLGAD for abbreviation)
Notably, the proposed algorithm improves the detection performance (up to 5.89% AUC gain) compared with the state-of-the-art methods.
arXiv Detail & Related papers (2023-09-12T08:06:04Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
We propose to select positive graph instances directly from existing graphs in the training set.
Our selection is based on certain domain-specific pair-wise similarity measurements.
Besides, we develop an adaptive node-level pre-training method to dynamically mask nodes to distribute them evenly in the graph.
arXiv Detail & Related papers (2022-06-23T20:12:51Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Simple Truncated SVD based Model for Node Classification on Heterophilic
Graphs [0.5309004257911242]
Graph Neural Networks (GNNs) have shown excellent performance on graphs that exhibit strong homophily.
Recent approaches have typically modified aggregation schemes, designed adaptive graph filters, etc. to address this limitation.
We propose a simple alternative method that exploits Truncated Singular Value Decomposition (TSVD) of topological structure and node features.
arXiv Detail & Related papers (2021-06-24T07:48:18Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
graph neural networks (GNNs) have greatly advanced the performance of node representation learning on graphs.
A majority class of GNNs are only designed for homogeneous graphs, leading to inferior adaptivity to the more informative heterogeneous graphs.
We propose a novel inductive, meta path-free message passing scheme that packs up heterogeneous node features with their associated edges from both low- and high-order neighbor nodes.
arXiv Detail & Related papers (2021-04-04T23:31:39Z) - Meta-path Free Semi-supervised Learning for Heterogeneous Networks [16.641434334366227]
Graph neural networks (GNNs) have been widely used in representation learning on graphs and achieved superior performance in tasks such as node classification.
In this paper, we propose simple and effective graph neural networks for heterogeneous graph, excluding the use of meta-paths.
arXiv Detail & Related papers (2020-10-18T06:01:58Z) - Heterogeneous Graph Neural Networks for Malicious Account Detection [64.0046412312209]
We present GEM, the first heterogeneous graph neural network approach for detecting malicious accounts.
We learn discriminative embeddings from heterogeneous account-device graphs based on two fundamental weaknesses of attackers, i.e. device aggregation and activity aggregation.
Experiments show that our approaches consistently perform promising results compared with competitive methods over time.
arXiv Detail & Related papers (2020-02-27T18:26:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.