Revisiting Applicable and Comprehensive Knowledge Tracing in Large-Scale Data
- URL: http://arxiv.org/abs/2501.14256v1
- Date: Fri, 24 Jan 2025 05:44:04 GMT
- Title: Revisiting Applicable and Comprehensive Knowledge Tracing in Large-Scale Data
- Authors: Yiyun Zhou, Wenkang Han, Jingyuan Chen,
- Abstract summary: Knowledge Tracing (KT) is a fundamental component of Intelligent Tutoring Systems (ITS)
We propose DKT2, a novel KT model that leverages the recently developed xLSTM architecture.
Extensive experiments conducted across three large-scale datasets demonstrate that DKT2 consistently outperforms 17 baseline models in various prediction tasks.
- Score: 2.979487471903892
- License:
- Abstract: Knowledge Tracing (KT) is a fundamental component of Intelligent Tutoring Systems (ITS), enabling the modeling of students' knowledge states to predict future performance. The introduction of Deep Knowledge Tracing (DKT), the first deep learning-based KT (DLKT) model, has brought significant advantages in terms of applicability and comprehensiveness. However, recent DLKT models, such as Attentive Knowledge Tracing (AKT), have often prioritized predictive performance at the expense of these benefits. While deep sequential models like DKT have shown potential, they face challenges related to parallel computing, storage decision modification, and limited storage capacity. To address these limitations, we propose DKT2, a novel KT model that leverages the recently developed xLSTM architecture. DKT2 enhances input representation using the Rasch model and incorporates Item Response Theory (IRT) for interpretability, allowing for the decomposition of learned knowledge into familiar and unfamiliar knowledge. By integrating this knowledge with predicted questions, DKT2 generates comprehensive knowledge states. Extensive experiments conducted across three large-scale datasets demonstrate that DKT2 consistently outperforms 17 baseline models in various prediction tasks, underscoring its potential for real-world educational applications. This work bridges the gap between theoretical advancements and practical implementation in KT.Our code and datasets will be available at https://github.com/codebase-2025/DKT2.
Related papers
- Automated Knowledge Concept Annotation and Question Representation Learning for Knowledge Tracing [59.480951050911436]
We present KCQRL, a framework for automated knowledge concept annotation and question representation learning.
We demonstrate the effectiveness of KCQRL across 15 KT algorithms on two large real-world Math learning datasets.
arXiv Detail & Related papers (2024-10-02T16:37:19Z) - SINKT: A Structure-Aware Inductive Knowledge Tracing Model with Large Language Model [64.92472567841105]
Knowledge Tracing (KT) aims to determine whether students will respond correctly to the next question.
Structure-aware Inductive Knowledge Tracing model with large language model (dubbed SINKT)
SINKT predicts the student's response to the target question by interacting with the student's knowledge state and the question representation.
arXiv Detail & Related papers (2024-07-01T12:44:52Z) - Improving Low-Resource Knowledge Tracing Tasks by Supervised Pre-training and Importance Mechanism Fine-tuning [25.566963415155325]
We propose a low-resource KT framework called LoReKT to address above challenges.
Inspired by the prevalent "pre-training and fine-tuning" paradigm, we aim to learn transferable parameters and representations from rich-resource KT datasets.
We design an encoding mechanism to incorporate student interactions from multiple KT data sources.
arXiv Detail & Related papers (2024-03-11T13:44:43Z) - Improving Interpretability of Deep Sequential Knowledge Tracing Models
with Question-centric Cognitive Representations [22.055683237994696]
We present QIKT, a question-centric interpretable KT model to address the above challenges.
The proposed QIKT approach explicitly models students' knowledge state variations at a fine-grained level.
It outperforms a wide range of deep learning based KT models in terms of prediction accuracy with better model interpretability.
arXiv Detail & Related papers (2023-02-14T08:14:30Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - Enhancing Knowledge Tracing via Adversarial Training [5.461665809706664]
We study the problem of knowledge tracing (KT) where the goal is to trace the students' knowledge mastery over time.
Recent advances on KT have increasingly concentrated on exploring deep neural networks (DNNs) to improve the performance of KT.
We propose an efficient AT based KT method (ATKT) to enhance KT model's generalization and thus push the limit of KT.
arXiv Detail & Related papers (2021-08-10T03:35:13Z) - Pre-Trained Models: Past, Present and Future [126.21572378910746]
Large-scale pre-trained models (PTMs) have recently achieved great success and become a milestone in the field of artificial intelligence (AI)
By storing knowledge into huge parameters and fine-tuning on specific tasks, the rich knowledge implicitly encoded in huge parameters can benefit a variety of downstream tasks.
It is now the consensus of the AI community to adopt PTMs as backbone for downstream tasks rather than learning models from scratch.
arXiv Detail & Related papers (2021-06-14T02:40:32Z) - A Survey of Knowledge Tracing: Models, Variants, and Applications [70.69281873057619]
Knowledge Tracing is one of the fundamental tasks for student behavioral data analysis.
We present three types of fundamental KT models with distinct technical routes.
We discuss potential directions for future research in this rapidly growing field.
arXiv Detail & Related papers (2021-05-06T13:05:55Z) - On the Interpretability of Deep Learning Based Models for Knowledge
Tracing [5.120837730908589]
Knowledge tracing allows Intelligent Tutoring Systems to infer which topics or skills a student has mastered.
Deep Learning based models like Deep Knowledge Tracing (DKT) and Dynamic Key-Value Memory Network (DKVMN) have achieved significant improvements.
However, these deep learning based models are not as interpretable as other models because the decision-making process learned by deep neural networks is not wholly understood.
arXiv Detail & Related papers (2021-01-27T11:55:03Z) - qDKT: Question-centric Deep Knowledge Tracing [29.431121650577396]
We introduce qDKT, a variant of DKT that models every learner's success probability on individual questions over time.
qDKT incorporates graph Laplacian regularization to smooth predictions under each skill.
Experiments on several real-world datasets show that qDKT achieves state-of-art performance on predicting learner outcomes.
arXiv Detail & Related papers (2020-05-25T23:43:55Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
We propose to adopt the post-hoc method to tackle the interpretability issue for deep learning based knowledge tracing (DLKT) models.
Specifically, we focus on applying the layer-wise relevance propagation (LRP) method to interpret RNN-based DLKT model.
Experiment results show the feasibility using the LRP method for interpreting the DLKT model's predictions.
arXiv Detail & Related papers (2020-05-13T04:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.