Active Learning for Continual Learning: Keeping the Past Alive in the Present
- URL: http://arxiv.org/abs/2501.14278v1
- Date: Fri, 24 Jan 2025 06:46:58 GMT
- Title: Active Learning for Continual Learning: Keeping the Past Alive in the Present
- Authors: Jaehyun Park, Dongmin Park, Jae-Gil Lee,
- Abstract summary: We propose AccuACL, Accumulated informativeness-based Active Continual Learning.
We show that AccuACL significantly outperforms AL baselines across various CL algorithms.
- Score: 17.693559751968742
- License:
- Abstract: Continual learning (CL) enables deep neural networks to adapt to ever-changing data distributions. In practice, there may be scenarios where annotation is costly, leading to active continual learning (ACL), which performs active learning (AL) for the CL scenarios when reducing the labeling cost by selecting the most informative subset is preferable. However, conventional AL strategies are not suitable for ACL, as they focus solely on learning the new knowledge, leading to catastrophic forgetting of previously learned tasks. Therefore, ACL requires a new AL strategy that can balance the prevention of catastrophic forgetting and the ability to quickly learn new tasks. In this paper, we propose AccuACL, Accumulated informativeness-based Active Continual Learning, by the novel use of the Fisher information matrix as a criterion for sample selection, derived from a theoretical analysis of the Fisher-optimality preservation properties within the framework of ACL, while also addressing the scalability issue of Fisher information-based AL. Extensive experiments demonstrate that AccuACL significantly outperforms AL baselines across various CL algorithms, increasing the average accuracy and forgetting by 23.8% and 17.0%, respectively, in average.
Related papers
- What Makes CLIP More Robust to Long-Tailed Pre-Training Data? A Controlled Study for Transferable Insights [67.72413262980272]
Severe data imbalance naturally exists among web-scale vision-language datasets.
We find CLIP pre-trained thereupon exhibits notable robustness to the data imbalance compared to supervised learning.
The robustness and discriminability of CLIP improve with more descriptive language supervision, larger data scale, and broader open-world concepts.
arXiv Detail & Related papers (2024-05-31T17:57:24Z) - Continual Learning on a Diet: Learning from Sparsely Labeled Streams Under Constrained Computation [123.4883806344334]
We study a realistic Continual Learning setting where learning algorithms are granted a restricted computational budget per time step while training.
We apply this setting to large-scale semi-supervised Continual Learning scenarios with sparse label rates.
Our extensive analysis and ablations demonstrate that DietCL is stable under a full spectrum of label sparsity, computational budget, and various other ablations.
arXiv Detail & Related papers (2024-04-19T10:10:39Z) - Data Poisoning for In-context Learning [49.77204165250528]
In-context learning (ICL) has been recognized for its innovative ability to adapt to new tasks.
This paper delves into the critical issue of ICL's susceptibility to data poisoning attacks.
We introduce ICLPoison, a specialized attacking framework conceived to exploit the learning mechanisms of ICL.
arXiv Detail & Related papers (2024-02-03T14:20:20Z) - Metalearning Continual Learning Algorithms [42.710124929514066]
We propose Automated Continual Learning (ACL) to train self-referential neural networks to continual (meta)learning algorithms.
ACL encodes continual learning (CL) desiderata -- good performance on both old and new tasks -- into its metalearning objectives.
Our experiments demonstrate that ACL effectively resolves "in-context catastrophic forgetting," a problem that naive in-context learning algorithms suffer from.
arXiv Detail & Related papers (2023-12-01T01:25:04Z) - In-Context Learning Learns Label Relationships but Is Not Conventional
Learning [60.891931501449726]
There is currently no consensus about how in-context learning (ICL) ability of Large Language Models works.
We provide novel insights into how ICL leverages label information, revealing both capabilities and limitations.
Our experiments show that ICL predictions almost always depend on in-context labels and that ICL can learn truly novel tasks in-context.
arXiv Detail & Related papers (2023-07-23T16:54:41Z) - Can Continual Learning Improve Long-Tailed Recognition? Toward a Unified
Framework [16.457778420360537]
Long-Tailed Recognition methods aim to accurately learn a dataset comprising both a larger Head set and a smaller Tail set.
We show that Continual Learning (CL) methods can effectively update the weights of the learner to learn the Tail without forgetting the Head.
We also assess the applicability of CL techniques on real-world data by exploring CL on the naturally imbalanced256 dataset.
arXiv Detail & Related papers (2023-06-23T03:05:33Z) - On the Effectiveness of Equivariant Regularization for Robust Online
Continual Learning [17.995662644298974]
Continual Learning (CL) approaches seek to bridge this gap by facilitating the transfer of knowledge to both previous tasks and future ones.
Recent research has shown that self-supervision can produce versatile models that can generalize well to diverse downstream tasks.
We propose Continual Learning via Equivariant Regularization (CLER), an OCL approach that leverages equivariant tasks for self-supervision.
arXiv Detail & Related papers (2023-05-05T16:10:31Z) - Beyond Supervised Continual Learning: a Review [69.9674326582747]
Continual Learning (CL) is a flavor of machine learning where the usual assumption of stationary data distribution is relaxed or omitted.
Changes in the data distribution can cause the so-called catastrophic forgetting (CF) effect: an abrupt loss of previous knowledge.
This article reviews literature that study CL in other settings, such as learning with reduced supervision, fully unsupervised learning, and reinforcement learning.
arXiv Detail & Related papers (2022-08-30T14:44:41Z) - Using Representation Expressiveness and Learnability to Evaluate
Self-Supervised Learning Methods [61.49061000562676]
We introduce Cluster Learnability (CL) to assess learnability.
CL is measured in terms of the performance of a KNN trained to predict labels obtained by clustering the representations with K-means.
We find that CL better correlates with in-distribution model performance than other competing recent evaluation schemes.
arXiv Detail & Related papers (2022-06-02T19:05:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.