論文の概要: An Efficient Real Time DDoS Detection Model Using Machine Learning Algorithms
- arxiv url: http://arxiv.org/abs/2501.14311v1
- Date: Fri, 24 Jan 2025 08:11:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:56:29.389030
- Title: An Efficient Real Time DDoS Detection Model Using Machine Learning Algorithms
- Title(参考訳): 機械学習アルゴリズムを用いた効率的なリアルタイムDDoS検出モデル
- Authors: Debashis Kar Suvra,
- Abstract要約: 本研究は,機械学習アルゴリズムを用いた効率的なリアルタイムDDoS検出システムの開発に焦点をあてる。
この研究は、これらのアルゴリズムの性能を、精度、リコール、F1スコア、時間的複雑さの観点から調査している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Distributed Denial of Service attacks have become a significant threat to industries and governments leading to substantial financial losses. With the growing reliance on internet services, DDoS attacks can disrupt services by overwhelming servers with false traffic causing downtime and data breaches. Although various detection techniques exist, selecting an effective method remains challenging due to trade-offs between time efficiency and accuracy. This research focuses on developing an efficient real-time DDoS detection system using machine learning algorithms leveraging the UNB CICDDoS2019 dataset including various traffic features. The study aims to classify DDoS and non-DDoS traffic through various ML classifiers including Logistic Regression, K-Nearest Neighbors, Random Forest, Support Vector Machine, Naive Bayes. The dataset is preprocessed through data cleaning, standardization and feature selection techniques using Principal Component Analysis. The research explores the performance of these algorithms in terms of precision, recall and F1-score as well as time complexity to create a reliable system capable of real-time detection and mitigation of DDoS attacks. The findings indicate that RF, AdaBoost and XGBoost outperform other algorithms in accuracy and efficiency, making them ideal candidates for real-time applications.
- Abstract(参考訳): 分散型DoS攻撃は産業や政府にとって重大な脅威となり、実質的な財政損失につながっている。
インターネットサービスへの依存度が高まる中、DDoS攻撃は、誤ったトラフィックでダウンタイムとデータ漏洩を引き起こした圧倒的なサーバによってサービスを妨害する可能性がある。
様々な検出手法が存在するが、時間効率と精度のトレードオフのため、有効な方法を選択することは依然として困難である。
本研究は,UNB CICDDoS2019データセットを利用した機械学習アルゴリズムを用いた効率的なリアルタイムDDoS検出システムの開発に焦点をあてる。
この研究は、ロジスティック回帰、K-Nearest Neighbors、ランダムフォレスト、サポートベクターマシン、ネイブベイズなど、さまざまなML分類器を通じてDDoSと非DDoSトラフィックを分類することを目的としている。
データセットは、プリンシパルコンポーネント分析を使用して、データのクリーニング、標準化、機能選択技術を通じて前処理される。
この研究は、これらのアルゴリズムのパフォーマンスを、精度、リコール、F1スコア、そして、DDoS攻撃のリアルタイム検出と緩和を可能にする信頼性の高いシステムを構築するための時間的複雑さの観点から調査している。
その結果、RF、AdaBoost、XGBoostは精度と効率で他のアルゴリズムよりも優れており、リアルタイムアプリケーションに最適な候補となっている。
関連論文リスト
- A Novel Supervised Deep Learning Solution to Detect Distributed Denial
of Service (DDoS) attacks on Edge Systems using Convolutional Neural Networks
(CNN) [0.41436032949434404]
ネットワークトラフィックにおけるDDoS攻撃を検出するための,新たなディープラーニングベースのアプローチを提案する。
本研究では、畳み込みニューラルネットワーク(CNN)と一般的なディープラーニングアルゴリズムの特性を利用する。
本研究は,DDOS攻撃検出における提案アルゴリズムの有効性を実証し,ネットワークトラフィックにおける2000の未確認フローに対して,.9883の精度を達成した。
論文 参考訳(メタデータ) (2023-09-11T17:37:35Z) - DAD++: Improved Data-free Test Time Adversarial Defense [12.606555446261668]
本稿では,検出・修正フレームワークを含むDAD(Data-free Adversarial Defense)を提案する。
提案手法の有効性を示すため,いくつかのデータセットとネットワークアーキテクチャについて幅広い実験と改善を行った。
私たちのDAD++は、クリーンな精度を最小限に抑えながら、様々な敵攻撃に対して印象的なパフォーマンスを提供します。
論文 参考訳(メタデータ) (2023-09-10T20:39:53Z) - Detection of DDoS Attacks in Software Defined Networking Using Machine
Learning Models [0.6193838300896449]
本稿では,ソフトウェア定義ネットワーク(SDN)環境において,分散型サービス障害(DDoS)攻撃を検出する機械学習アルゴリズムの有効性について検討する。
その結果、MLベースの検出は、SDNにおけるDDoS攻撃を特定するためのより正確で効果的な方法であることが示唆された。
論文 参考訳(メタデータ) (2023-03-11T22:56:36Z) - Adversarial training with informed data selection [53.19381941131439]
アドリアリトレーニングは、これらの悪意のある攻撃からネットワークを守るための最も効率的なソリューションである。
本研究では,ミニバッチ学習に適用すべきデータ選択戦略を提案する。
シミュレーションの結果,ロバスト性および標準精度に関して良好な妥協が得られることがわかった。
論文 参考訳(メタデータ) (2023-01-07T12:09:50Z) - ARLIF-IDS -- Attention augmented Real-Time Isolation Forest Intrusion
Detection System [0.0]
Internet of ThingsとSoftware Defined Networkingは、DDoS攻撃の早期検出に軽量戦略を活用する。
低数の機能に基づいて、迅速かつ効果的なセキュリティ識別モデルを持つことが不可欠である。
本研究は,新規なアテンションベース森林侵入検知システムを提案する。
論文 参考訳(メタデータ) (2022-04-20T18:40:23Z) - Dynamic Network-Assisted D2D-Aided Coded Distributed Learning [59.29409589861241]
本稿では,デバイス間のロードバランシングのための新しいデバイス・ツー・デバイス(D2D)支援型符号化学習手法(D2D-CFL)を提案する。
最小処理時間を達成するための最適圧縮率を導出し、収束時間との接続を確立する。
提案手法は,ユーザが継続的にトレーニングデータを生成するリアルタイム協調アプリケーションに有用である。
論文 参考訳(メタデータ) (2021-11-26T18:44:59Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
SWADと呼ばれる新しい選択および重み付けに基づく異常検出フレームワークを提案する。
ベンチマークと実世界のデータセットによる実験は、SWADの有効性と優位性を示している。
論文 参考訳(メタデータ) (2021-03-08T10:56:38Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - Data Mining with Big Data in Intrusion Detection Systems: A Systematic
Literature Review [68.15472610671748]
クラウドコンピューティングは、複雑で高性能でスケーラブルな計算のために、強力で必要不可欠な技術になっている。
データ生成の迅速化とボリュームは、データ管理とセキュリティに重大な課題をもたらし始めている。
ビッグデータ設定における侵入検知システム(IDS)の設計と展開が重要視されている。
論文 参考訳(メタデータ) (2020-05-23T20:57:12Z) - An Intelligent and Time-Efficient DDoS Identification Framework for
Real-Time Enterprise Networks SAD-F: Spark Based Anomaly Detection Framework [0.5811502603310248]
我々は、異なる機械学習技術を用いたDDoS異常検出のためのセキュリティ解析技術について検討する。
本稿では,システムへの入力として実際のトラフィックを扱う新しいアプローチを提案する。
提案するフレームワークの性能要因を3つの異なるテストベッドで検討・比較する。
論文 参考訳(メタデータ) (2020-01-21T06:05:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。