Interpretability Analysis of Domain Adapted Dense Retrievers
- URL: http://arxiv.org/abs/2501.14459v1
- Date: Fri, 24 Jan 2025 12:42:53 GMT
- Title: Interpretability Analysis of Domain Adapted Dense Retrievers
- Authors: Goksenin Yuksel, Jaap Kamps,
- Abstract summary: We develop an interpretability method that provides both instance-based and ranking-based explanations for dense retrievers.
Our visualizations reveal that domain-adapted models focus more on in-domain terminology compared to non-adapted models.
This research addresses how unsupervised domain adaptation techniques influence the behavior of dense retrievers when adapted to new domains.
- Score: 0.7305019142196582
- License:
- Abstract: Dense retrievers have demonstrated significant potential for neural information retrieval; however, they exhibit a lack of robustness to domain shifts, thereby limiting their efficacy in zero-shot settings across diverse domains. Previous research has investigated unsupervised domain adaptation techniques to adapt dense retrievers to target domains. However, these studies have not focused on explainability analysis to understand how such adaptations alter the model's behavior. In this paper, we propose utilizing the integrated gradients framework to develop an interpretability method that provides both instance-based and ranking-based explanations for dense retrievers. To generate these explanations, we introduce a novel baseline that reveals both query and document attributions. This method is used to analyze the effects of domain adaptation on input attributions for query and document tokens across two datasets: the financial question answering dataset (FIQA) and the biomedical information retrieval dataset (TREC-COVID). Our visualizations reveal that domain-adapted models focus more on in-domain terminology compared to non-adapted models, exemplified by terms such as "hedge," "gold," "corona," and "disease." This research addresses how unsupervised domain adaptation techniques influence the behavior of dense retrievers when adapted to new domains. Additionally, we demonstrate that integrated gradients are a viable choice for explaining and analyzing the internal mechanisms of these opaque neural models.
Related papers
- Feature Based Methods in Domain Adaptation for Object Detection: A Review Paper [0.6437284704257459]
Domain adaptation aims to enhance the performance of machine learning models when deployed in target domains with distinct data distributions.
This review delves into advanced methodologies for domain adaptation, including adversarial learning, discrepancy-based, multi-domain, teacher-student, ensemble, and Vision Language Models.
Special attention is given to strategies that minimize the reliance on extensive labeled data, particularly in scenarios involving synthetic-to-real domain shifts.
arXiv Detail & Related papers (2024-12-23T06:34:23Z) - Towards Subject Agnostic Affective Emotion Recognition [8.142798657174332]
EEG signals manifest subject instability in subject-agnostic affective Brain-computer interfaces (aBCIs)
We propose a novel framework, meta-learning based augmented domain adaptation for subject-agnostic aBCIs.
Our proposed approach is shown to be effective in experiments on a public aBICs dataset.
arXiv Detail & Related papers (2023-10-20T23:44:34Z) - DARE: Towards Robust Text Explanations in Biomedical and Healthcare
Applications [54.93807822347193]
We show how to adapt attribution robustness estimation methods to a given domain, so as to take into account domain-specific plausibility.
Next, we provide two methods, adversarial training and FAR training, to mitigate the brittleness characterized by DARE.
Finally, we empirically validate our methods with extensive experiments on three established biomedical benchmarks.
arXiv Detail & Related papers (2023-07-05T08:11:40Z) - Feed-Forward Latent Domain Adaptation [17.71179872529747]
We study a new highly-practical problem setting that enables resource-constrained edge devices to adapt a pre-trained model to their local data distributions.
Considering limitations of edge devices, we aim to only use a pre-trained model and adapt it in a feed-forward way, without using back-propagation and without access to the source data.
Our solution is to meta-learn a network capable of embedding the mixed-relevance target dataset and dynamically adapting inference for target examples using cross-attention.
arXiv Detail & Related papers (2022-07-15T17:37:42Z) - f-Domain-Adversarial Learning: Theory and Algorithms [82.97698406515667]
Unsupervised domain adaptation is used in many machine learning applications where, during training, a model has access to unlabeled data in the target domain.
We derive a novel generalization bound for domain adaptation that exploits a new measure of discrepancy between distributions based on a variational characterization of f-divergences.
arXiv Detail & Related papers (2021-06-21T18:21:09Z) - Gradual Domain Adaptation via Self-Training of Auxiliary Models [50.63206102072175]
Domain adaptation becomes more challenging with increasing gaps between source and target domains.
We propose self-training of auxiliary models (AuxSelfTrain) that learns models for intermediate domains.
Experiments on benchmark datasets of unsupervised and semi-supervised domain adaptation verify its efficacy.
arXiv Detail & Related papers (2021-06-18T03:15:25Z) - Unsupervised Domain Adaption of Object Detectors: A Survey [87.08473838767235]
Recent advances in deep learning have led to the development of accurate and efficient models for various computer vision applications.
Learning highly accurate models relies on the availability of datasets with a large number of annotated images.
Due to this, model performance drops drastically when evaluated on label-scarce datasets having visually distinct images.
arXiv Detail & Related papers (2021-05-27T23:34:06Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
Large-scale labeled training datasets have enabled deep neural networks to excel across a wide range of benchmark vision tasks.
In many applications, it is prohibitively expensive and time-consuming to obtain large quantities of labeled data.
To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled or unlabeled target domain.
arXiv Detail & Related papers (2020-09-01T00:06:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.