A Note on Implementation Errors in Recent Adaptive Attacks Against Multi-Resolution Self-Ensembles
- URL: http://arxiv.org/abs/2501.14496v1
- Date: Fri, 24 Jan 2025 13:52:37 GMT
- Title: A Note on Implementation Errors in Recent Adaptive Attacks Against Multi-Resolution Self-Ensembles
- Authors: Stanislav Fort,
- Abstract summary: This note documents an implementation issue in recent adaptive attacks against the multi-resolution self-ensemble defense.
When attacks are properly constrained within the intended bounds, the defense maintains non-trivial robustness.
Our analysis reveals an intriguing finding: properly bounded adaptive attacks against strong multi-resolution self-ensembles often align with human perception.
- Score: 7.681029509871509
- License:
- Abstract: This note documents an implementation issue in recent adaptive attacks (Zhang et al. [2024]) against the multi-resolution self-ensemble defense (Fort and Lakshminarayanan [2024]). The implementation allowed adversarial perturbations to exceed the standard $L_\infty = 8/255$ bound by up to a factor of 20$\times$, reaching magnitudes of up to $L_\infty = 160/255$. When attacks are properly constrained within the intended bounds, the defense maintains non-trivial robustness. Beyond highlighting the importance of careful validation in adversarial machine learning research, our analysis reveals an intriguing finding: properly bounded adaptive attacks against strong multi-resolution self-ensembles often align with human perception, suggesting the need to reconsider how we measure adversarial robustness.
Related papers
- Position: Towards Resilience Against Adversarial Examples [42.09231029292568]
We provide a definition of adversarial resilience and outline considerations of designing an adversarially resilient defense.
We then introduce a subproblem of adversarial resilience which we call continual adaptive robustness.
We demonstrate the connection between continual adaptive robustness and previously studied problems of multiattack robustness and unforeseen attack robustness.
arXiv Detail & Related papers (2024-05-02T14:58:44Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked.
We propose an attack-agnostic defense method named Meta Invariance Defense (MID)
We show that MID simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration.
arXiv Detail & Related papers (2024-04-04T10:10:38Z) - Exploring the Adversarial Frontier: Quantifying Robustness via Adversarial Hypervolume [17.198794644483026]
We propose a new metric termed adversarial hypervolume, assessing the robustness of deep learning models comprehensively over a range of perturbation intensities.
We adopt a novel training algorithm that enhances adversarial robustness uniformly across various perturbation intensities.
This research contributes a new measure of robustness and establishes a standard for assessing benchmarking and the resilience of current and future defensive models against adversarial threats.
arXiv Detail & Related papers (2024-03-08T07:03:18Z) - Cooperation or Competition: Avoiding Player Domination for Multi-Target
Robustness via Adaptive Budgets [76.20705291443208]
We view adversarial attacks as a bargaining game in which different players negotiate to reach an agreement on a joint direction of parameter updating.
We design a novel framework that adjusts the budgets of different adversaries to avoid any player dominance.
Experiments on standard benchmarks show that employing the proposed framework to the existing approaches significantly advances multi-target robustness.
arXiv Detail & Related papers (2023-06-27T14:02:10Z) - Interpretability is a Kind of Safety: An Interpreter-based Ensemble for
Adversary Defense [28.398901783858005]
We propose an interpreter-based ensemble framework called X-Ensemble for robust defense adversary.
X-Ensemble employs the Random Forests (RF) model to combine sub-detectors into an ensemble detector for adversarial hybrid attacks defense.
arXiv Detail & Related papers (2023-04-14T04:32:06Z) - Revisiting DeepFool: generalization and improvement [16.554225382392993]
We introduce a new family of adversarial attacks that strike a balance between effectiveness and computational efficiency.
Our proposed attacks are also suitable for evaluating the robustness of large models and can be used to perform adversarial training.
arXiv Detail & Related papers (2023-03-22T11:49:35Z) - Practical Evaluation of Adversarial Robustness via Adaptive Auto Attack [96.50202709922698]
A practical evaluation method should be convenient (i.e., parameter-free), efficient (i.e., fewer iterations) and reliable.
We propose a parameter-free Adaptive Auto Attack (A$3$) evaluation method which addresses the efficiency and reliability in a test-time-training fashion.
arXiv Detail & Related papers (2022-03-10T04:53:54Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
We study the provable robustness of reinforcement learning against norm-bounded adversarial perturbations of the inputs.
We generate certificates that guarantee that the total reward obtained by the smoothed policy will not fall below a certain threshold under a norm-bounded adversarial of perturbation the input.
arXiv Detail & Related papers (2021-06-21T21:42:08Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNs are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications.
We propose the adaptive feature alignment (AFA) to generate features of arbitrary attacking strengths.
Our method is trained to automatically align features of arbitrary attacking strength.
arXiv Detail & Related papers (2021-05-31T17:01:05Z) - Reliable evaluation of adversarial robustness with an ensemble of
diverse parameter-free attacks [65.20660287833537]
In this paper we propose two extensions of the PGD-attack overcoming failures due to suboptimal step size and problems of the objective function.
We then combine our novel attacks with two complementary existing ones to form a parameter-free, computationally affordable and user-independent ensemble of attacks to test adversarial robustness.
arXiv Detail & Related papers (2020-03-03T18:15:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.