Exploring the Adversarial Frontier: Quantifying Robustness via Adversarial Hypervolume
- URL: http://arxiv.org/abs/2403.05100v2
- Date: Sun, 17 Nov 2024 14:42:51 GMT
- Title: Exploring the Adversarial Frontier: Quantifying Robustness via Adversarial Hypervolume
- Authors: Ping Guo, Cheng Gong, Xi Lin, Zhiyuan Yang, Qingfu Zhang,
- Abstract summary: We propose a new metric termed adversarial hypervolume, assessing the robustness of deep learning models comprehensively over a range of perturbation intensities.
We adopt a novel training algorithm that enhances adversarial robustness uniformly across various perturbation intensities.
This research contributes a new measure of robustness and establishes a standard for assessing benchmarking and the resilience of current and future defensive models against adversarial threats.
- Score: 17.198794644483026
- License:
- Abstract: The escalating threat of adversarial attacks on deep learning models, particularly in security-critical fields, has underscored the need for robust deep learning systems. Conventional robustness evaluations have relied on adversarial accuracy, which measures a model's performance under a specific perturbation intensity. However, this singular metric does not fully encapsulate the overall resilience of a model against varying degrees of perturbation. To address this gap, we propose a new metric termed adversarial hypervolume, assessing the robustness of deep learning models comprehensively over a range of perturbation intensities from a multi-objective optimization standpoint. This metric allows for an in-depth comparison of defense mechanisms and recognizes the trivial improvements in robustness afforded by less potent defensive strategies. Additionally, we adopt a novel training algorithm that enhances adversarial robustness uniformly across various perturbation intensities, in contrast to methods narrowly focused on optimizing adversarial accuracy. Our extensive empirical studies validate the effectiveness of the adversarial hypervolume metric, demonstrating its ability to reveal subtle differences in robustness that adversarial accuracy overlooks. This research contributes a new measure of robustness and establishes a standard for assessing and benchmarking the resilience of current and future defensive models against adversarial threats.
Related papers
- Extreme Miscalibration and the Illusion of Adversarial Robustness [66.29268991629085]
Adversarial Training is often used to increase model robustness.
We show that this observed gain in robustness is an illusion of robustness (IOR)
We urge the NLP community to incorporate test-time temperature scaling into their robustness evaluations.
arXiv Detail & Related papers (2024-02-27T13:49:12Z) - Dynamic ensemble selection based on Deep Neural Network Uncertainty
Estimation for Adversarial Robustness [7.158144011836533]
This work explore the dynamic attributes in model level through dynamic ensemble selection technology.
In training phase the Dirichlet distribution is apply as prior of sub-models' predictive distribution, and the diversity constraint in parameter space is introduced.
In test phase, the certain sub-models are dynamically selected based on their rank of uncertainty value for the final prediction.
arXiv Detail & Related papers (2023-08-01T07:41:41Z) - Revisiting DeepFool: generalization and improvement [17.714671419826715]
We introduce a new family of adversarial attacks that strike a balance between effectiveness and computational efficiency.
Our proposed attacks are also suitable for evaluating the robustness of large models.
arXiv Detail & Related papers (2023-03-22T11:49:35Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
A standard method in adversarial robustness assumes a framework to defend against samples crafted by minimally perturbing a sample.
We use metric learning to frame adversarial regularization as an optimal transport problem.
Our preliminary results indicate that regularizing over invariant perturbations in our framework improves both invariant and sensitivity defense.
arXiv Detail & Related papers (2022-11-04T13:54:02Z) - How many perturbations break this model? Evaluating robustness beyond
adversarial accuracy [28.934863462633636]
We introduce adversarial sparsity, which quantifies how difficult it is to find a successful perturbation given both an input point and a constraint on the direction of the perturbation.
We show that sparsity provides valuable insight into neural networks in multiple ways.
arXiv Detail & Related papers (2022-07-08T21:25:17Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
A major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks.
This study presents the concept of residual error, a new performance measure for assessing the adversarial robustness of a deep neural network.
Experimental results using the case of image classification demonstrate the effectiveness and efficacy of the proposed residual error metric.
arXiv Detail & Related papers (2021-06-18T16:34:23Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNs are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications.
We propose the adaptive feature alignment (AFA) to generate features of arbitrary attacking strengths.
Our method is trained to automatically align features of arbitrary attacking strength.
arXiv Detail & Related papers (2021-05-31T17:01:05Z) - Adversarially Robust Estimate and Risk Analysis in Linear Regression [17.931533943788335]
Adversarially robust learning aims to design algorithms that are robust to small adversarial perturbations on input variables.
By discovering the statistical minimax rate of convergence of adversarially robust estimators, we emphasize the importance of incorporating model information.
We propose a straightforward two-stage adversarial learning framework, which facilitates to utilize model structure information to improve adversarial robustness.
arXiv Detail & Related papers (2020-12-18T14:55:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.