Trick-GS: A Balanced Bag of Tricks for Efficient Gaussian Splatting
- URL: http://arxiv.org/abs/2501.14534v1
- Date: Fri, 24 Jan 2025 14:40:40 GMT
- Title: Trick-GS: A Balanced Bag of Tricks for Efficient Gaussian Splatting
- Authors: Anil Armagan, Albert SaĆ -Garriga, Bruno Manganelli, Mateusz Nowak, Mehmet Kerim Yucel,
- Abstract summary: Gaussian splatting (GS) for 3D reconstruction has become quite popular due to their fast training, inference speeds and high quality reconstruction.<n>However, GS-based reconstructions generally consist of millions of Gaussians, which makes them hard to use on computationally constrained devices such as smartphones.<n>Trick-GS takes a large step towards resource-constrained GS, where faster run-time, smaller and faster-convergence of models is of paramount concern.
- Score: 4.11274012475378
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian splatting (GS) for 3D reconstruction has become quite popular due to their fast training, inference speeds and high quality reconstruction. However, GS-based reconstructions generally consist of millions of Gaussians, which makes them hard to use on computationally constrained devices such as smartphones. In this paper, we first propose a principled analysis of advances in efficient GS methods. Then, we propose Trick-GS, which is a careful combination of several strategies including (1) progressive training with resolution, noise and Gaussian scales, (2) learning to prune and mask primitives and SH bands by their significance, and (3) accelerated GS training framework. Trick-GS takes a large step towards resource-constrained GS, where faster run-time, smaller and faster-convergence of models is of paramount concern. Our results on three datasets show that Trick-GS achieves up to 2x faster training, 40x smaller disk size and 2x faster rendering speed compared to vanilla GS, while having comparable accuracy.
Related papers
- Second-order Optimization of Gaussian Splats with Importance Sampling [51.95046424364725]
3D Gaussian Splatting (3DGS) is widely used for novel view rendering due to its high quality and fast inference time.
We propose a novel second-order optimization strategy based on Levenberg-Marquardt (LM) and Conjugate Gradient (CG)
Our method achieves a $3times$ speedup over standard LM and outperforms Adam by $6times$ when the Gaussian count is low.
arXiv Detail & Related papers (2025-04-17T12:52:08Z) - GSta: Efficient Training Scheme with Siestaed Gaussians for Monocular 3D Scene Reconstruction [4.865050337780373]
Gaussian Splatting (GS) is a popular approach for 3D reconstruction.
It suffers from large storage and memory requirements.
We propose GSta that identifies Gaussians that have converged well during training.
arXiv Detail & Related papers (2025-04-09T09:17:56Z) - CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes [53.107474952492396]
CityGaussianV2 is a novel approach for large-scale scene reconstruction.
We implement a decomposed-gradient-based densification and depth regression technique to eliminate blurry artifacts and accelerate convergence.
Our method strikes a promising balance between visual quality, geometric accuracy, as well as storage and training costs.
arXiv Detail & Related papers (2024-11-01T17:59:31Z) - LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
We propose learning-to-prune 3DGS, where a trainable binary mask is applied to the importance score that can find optimal pruning ratio automatically.
Experiments have shown that LP-3DGS consistently produces a good balance that is both efficient and high quality.
arXiv Detail & Related papers (2024-05-29T05:58:34Z) - DOGS: Distributed-Oriented Gaussian Splatting for Large-Scale 3D Reconstruction Via Gaussian Consensus [56.45194233357833]
We propose DoGaussian, a method that trains 3DGS distributedly.
Our method accelerates the training of 3DGS by 6+ times when evaluated on large-scale scenes.
arXiv Detail & Related papers (2024-05-22T19:17:58Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
arXiv Detail & Related papers (2024-02-22T16:00:20Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES (Generalized Exponential Splatting) is a novel representation that employs Generalized Exponential Function (GEF) to model 3D scenes.
With the aid of a frequency-modulated loss, GES achieves competitive performance in novel-view synthesis benchmarks.
arXiv Detail & Related papers (2024-02-15T17:32:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.