Exploring Answer Set Programming for Provenance Graph-Based Cyber Threat Detection: A Novel Approach
- URL: http://arxiv.org/abs/2501.14555v1
- Date: Fri, 24 Jan 2025 14:57:27 GMT
- Title: Exploring Answer Set Programming for Provenance Graph-Based Cyber Threat Detection: A Novel Approach
- Authors: Fang Li, Fei Zuo, Gopal Gupta,
- Abstract summary: Provenance graphs are useful tools for representing system-level activities in cybersecurity.
This paper presents a novel approach using ASP to model and analyze provenance graphs.
- Score: 4.302577059401172
- License:
- Abstract: Provenance graphs are useful and powerful tools for representing system-level activities in cybersecurity; however, existing approaches often struggle with complex queries and flexible reasoning. This paper presents a novel approach using Answer Set Programming (ASP) to model and analyze provenance graphs. We introduce an ASP-based representation that captures intricate relationships between system entities, including temporal and causal dependencies. Our model enables sophisticated analysis capabilities such as attack path tracing, data exfiltration detection, and anomaly identification. The declarative nature of ASP allows for concise expression of complex security patterns and policies, facilitating both real-time threat detection and forensic analysis. We demonstrate our approach's effectiveness through case studies showcasing its threat detection capabilities. Experimental results illustrate the model's ability to handle large-scale provenance graphs while providing expressive querying. The model's extensibility allows for incorporation of new system behaviors and security rules, adapting to evolving cyber threats. This work contributes a powerful, flexible, and explainable framework for reasoning about system behaviors and security incidents, advancing the development of effective threat detection and forensic investigation tools.
Related papers
- Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
Benchmarks are plagued by various biases, artifacts, or leakage.
Models may behave unreliably due to poorly explored failure modes.
causality offers an ideal framework to systematically address these challenges.
arXiv Detail & Related papers (2025-02-07T17:01:37Z) - Algorithmic Segmentation and Behavioral Profiling for Ransomware Detection Using Temporal-Correlation Graphs [0.0]
A novel framework was introduced, leveraging Temporal-Correlation Graphs to model the intricate relationships and temporal patterns inherent in malicious operations.
Experiments demonstrated the framework's effectiveness across diverse ransomware families, with consistently high precision, recall, and overall detection accuracy.
The research contributes to advancing cybersecurity technologies by integrating dynamic graph analytics and machine learning for future innovations in threat detection.
arXiv Detail & Related papers (2025-01-29T06:09:25Z) - Enhancing Cyber Security through Predictive Analytics: Real-Time Threat Detection and Response [0.0]
The study uses a dataset from Kaggle with 2000 instances of network traffic and security events.
The findings show that predictive analytics enhance the vigilance of threats and response time.
This paper advocates for predictive analytics as an essential component for developing preventative cyber security strategies.
arXiv Detail & Related papers (2024-07-15T16:11:34Z) - It Is Time To Steer: A Scalable Framework for Analysis-driven Attack Graph Generation [50.06412862964449]
Attack Graph (AG) represents the best-suited solution to support cyber risk assessment for multi-step attacks on computer networks.
Current solutions propose to address the generation problem from the algorithmic perspective and postulate the analysis only after the generation is complete.
This paper rethinks the classic AG analysis through a novel workflow in which the analyst can query the system anytime.
arXiv Detail & Related papers (2023-12-27T10:44:58Z) - Efficient Network Representation for GNN-based Intrusion Detection [2.321323878201932]
The last decades have seen a growth in the number of cyber-attacks with severe economic and privacy damages.
We propose a novel network representation as a graph of flows that aims to provide relevant topological information for the intrusion detection task.
We present a Graph Neural Network (GNN) based framework responsible for exploiting the proposed graph structure.
arXiv Detail & Related papers (2023-09-11T16:10:12Z) - Kairos: Practical Intrusion Detection and Investigation using
Whole-system Provenance [4.101641763092759]
Provenance graphs are structured audit logs that describe the history of a system's execution.
We identify four common dimensions that drive the development of provenance-based intrusion detection systems (PIDSes)
We present KAIROS, the first PIDS that simultaneously satisfies the desiderata in all four dimensions.
arXiv Detail & Related papers (2023-08-09T16:04:55Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
This paper presents a visual framework to investigate neural network models subjected to adversarial examples.
We show how observing these elements can quickly pinpoint exploited areas in a model.
arXiv Detail & Related papers (2021-03-18T13:04:21Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.