Algorithmic Segmentation and Behavioral Profiling for Ransomware Detection Using Temporal-Correlation Graphs
- URL: http://arxiv.org/abs/2501.17429v1
- Date: Wed, 29 Jan 2025 06:09:25 GMT
- Title: Algorithmic Segmentation and Behavioral Profiling for Ransomware Detection Using Temporal-Correlation Graphs
- Authors: Ignatius Rollere, Caspian Hartsfield, Seraphina Courtenay, Lucian Fenwick, Aurelia Grunwald,
- Abstract summary: A novel framework was introduced, leveraging Temporal-Correlation Graphs to model the intricate relationships and temporal patterns inherent in malicious operations.
Experiments demonstrated the framework's effectiveness across diverse ransomware families, with consistently high precision, recall, and overall detection accuracy.
The research contributes to advancing cybersecurity technologies by integrating dynamic graph analytics and machine learning for future innovations in threat detection.
- Score: 0.0
- License:
- Abstract: The rapid evolution of cyber threats has outpaced traditional detection methodologies, necessitating innovative approaches capable of addressing the adaptive and complex behaviors of modern adversaries. A novel framework was introduced, leveraging Temporal-Correlation Graphs to model the intricate relationships and temporal patterns inherent in malicious operations. The approach dynamically captured behavioral anomalies, offering a robust mechanism for distinguishing between benign and malicious activities in real-time scenarios. Extensive experiments demonstrated the framework's effectiveness across diverse ransomware families, with consistently high precision, recall, and overall detection accuracy. Comparative evaluations highlighted its better performance over traditional signature-based and heuristic methods, particularly in handling polymorphic and previously unseen ransomware variants. The architecture was designed with scalability and modularity in mind, ensuring compatibility with enterprise-scale environments while maintaining resource efficiency. Analysis of encryption speeds, anomaly patterns, and temporal correlations provided deeper insights into the operational strategies of ransomware, validating the framework's adaptability to evolving threats. The research contributes to advancing cybersecurity technologies by integrating dynamic graph analytics and machine learning for future innovations in threat detection. Results from this study underline the potential for transforming the way organizations detect and mitigate complex cyberattacks.
Related papers
- A Computational Model for Ransomware Detection Using Cross-Domain Entropy Signatures [0.0]
An entropy-based computational framework was introduced to analyze multi-domain system variations.
A detection methodology was developed to differentiate between benign and ransomware-induced entropy shifts.
arXiv Detail & Related papers (2025-02-15T07:50:55Z) - Hierarchical Polysemantic Feature Embedding for Autonomous Ransomware Detection [0.0]
The evolution of ransomware requires the development of more sophisticated detection techniques.
The proposed framework embeds ransomware-relevant features into a non-Euclidean space.
Experimental evaluations demonstrated that the framework consistently outperformed conventional machine learning-based models.
The proposed method maintains a balance between detection performance and processing overhead, making it a viable candidate for real-world cybersecurity applications.
arXiv Detail & Related papers (2025-02-09T21:46:36Z) - Entropy-Synchronized Neural Hashing for Unsupervised Ransomware Detection [0.0]
The Entropy-Synchronized Neural Hashing (ESNH) framework uses entropy-driven hash representations to classify software binaries.
The model generates robust and unique hash values that maintain stability even when faced with polymorphic and metamorphic transformations.
arXiv Detail & Related papers (2025-01-30T04:40:57Z) - Intelligent Code Embedding Framework for High-Precision Ransomware Detection via Multimodal Execution Path Analysis [0.0]
A novel framework was developed to identify ransomware activity through multimodal execution path analysis.
It integrates high-dimensional embeddings and dynamic derivation mechanisms to capture behavioral patterns across diverse attack variants.
arXiv Detail & Related papers (2025-01-27T07:51:51Z) - Unveiling Zero-Space Detection: A Novel Framework for Autonomous Ransomware Identification in High-Velocity Environments [0.0]
The proposed Zero-Space Detection framework identifies latent behavioral patterns through unsupervised clustering and advanced deep learning techniques.
It operates effectively in high-velocity environments by integrating multi-phase filtering and ensemble learning for refined decision-making.
Experimental evaluation reveals high detection rates across diverse ransomware families, including LockBit, Conti, REvil, and BlackMatter.
arXiv Detail & Related papers (2025-01-22T11:41:44Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
We present an effective method, called Hamiltonian Monte Carlo with Accumulated Momentum (HMCAM), aiming to generate a sequence of adversarial examples.
We also propose a new generative method called Contrastive Adversarial Training (CAT), which approaches equilibrium distribution of adversarial examples.
Both quantitative and qualitative analysis on several natural image datasets and practical systems have confirmed the superiority of the proposed algorithm.
arXiv Detail & Related papers (2020-10-15T16:07:26Z) - Bridging Mode Connectivity in Loss Landscapes and Adversarial Robustness [97.67477497115163]
We use mode connectivity to study the adversarial robustness of deep neural networks.
Our experiments cover various types of adversarial attacks applied to different network architectures and datasets.
Our results suggest that mode connectivity offers a holistic tool and practical means for evaluating and improving adversarial robustness.
arXiv Detail & Related papers (2020-04-30T19:12:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.