論文の概要: Geometric Mean Improves Loss For Few-Shot Learning
- arxiv url: http://arxiv.org/abs/2501.14593v1
- Date: Fri, 24 Jan 2025 15:56:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:56:47.777055
- Title: Geometric Mean Improves Loss For Few-Shot Learning
- Title(参考訳): Geometric Meanは、いくつかのショット学習の損失を改善する
- Authors: Tong Wu, Takumi Kobayashi,
- Abstract要約: 本研究では, 識別指標を深部特徴に埋め込むために, エンフェロメトリ平均に基づく新たな損失を提案する。
少数ショット画像分類タスクの実験では、他の損失と比べて競争性能が向上した。
- 参考スコア(独自算出の注目度): 22.919680257199754
- License:
- Abstract: Few-shot learning (FSL) is a challenging task in machine learning, demanding a model to render discriminative classification by using only a few labeled samples. In the literature of FSL, deep models are trained in a manner of metric learning to provide metric in a feature space which is well generalizable to classify samples of novel classes; in the space, even a few amount of labeled training examples can construct an effective classifier. In this paper, we propose a novel FSL loss based on \emph{geometric mean} to embed discriminative metric into deep features. In contrast to the other losses such as utilizing arithmetic mean in softmax-based formulation, the proposed method leverages geometric mean to aggregate pair-wise relationships among samples for enhancing discriminative metric across class categories. The proposed loss is not only formulated in a simple form but also is thoroughly analyzed in theoretical ways to reveal its favorable characteristics which are favorable for learning feature metric in FSL. In the experiments on few-shot image classification tasks, the method produces competitive performance in comparison to the other losses.
- Abstract(参考訳): FSL(Few-shot Learning)は機械学習において難しい課題であり、少数のラベル付きサンプルを使用して識別的分類を行うモデルを必要とする。
FSLの文献では、ディープモデルは、新しいクラスのサンプルを分類するのによく一般化可能な特徴空間におけるメートル法を提供するために、計量学習の方法で訓練される。
本稿では,識別指標を深部特徴に埋め込むために,emph{geometric mean}に基づく新しいFSL損失を提案する。
ソフトマックスに基づく定式化における算術平均の活用などの他の損失とは対照的に,提案手法は幾何平均を利用して,クラスカテゴリ間での判別基準の強化を目的としたサンプル間のペアワイズ関係を集約する。
提案した損失は, 単純な形態で定式化されるだけでなく, FSLにおける特徴量学習に好適な特徴を明らかにするために, 理論的手法で徹底的に解析される。
少数ショット画像分類タスクの実験では、他の損失と比べて競争性能が向上した。
関連論文リスト
- Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
我々は,クラスごとのサンプル数に関する事前知識を必要とせず,シンプルなロジットアプローチ(LORT)を開発した。
提案手法は,CIFAR100-LT, ImageNet-LT, iNaturalist 2018など,様々な不均衡データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-01T03:27:08Z) - An Adaptive Plug-and-Play Network for Few-Shot Learning [12.023266104119289]
少数のサンプルから学んだ後、新しいサンプルを分類するモデルが必要である。
ディープネットワークと複雑なメトリクスはオーバーフィッティングを引き起こす傾向があり、パフォーマンスをさらに改善することは困難である。
プラグアンドプレイ型モデル適応型リサイザ (MAR) とアダプティブ類似度測定器 (ASM) をその他の損失なく提案する。
論文 参考訳(メタデータ) (2023-02-18T13:25:04Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
深層学習のためのクラス内適応拡張(IAA)フレームワークを提案する。
クラスごとのクラス内変動を合理的に推定し, 適応型合成試料を生成し, 硬質試料の採掘を支援する。
本手法は,検索性能の最先端手法を3%~6%向上させる。
論文 参考訳(メタデータ) (2022-11-29T14:52:38Z) - Bayesian Evidential Learning for Few-Shot Classification [22.46281648187903]
Few-Shot 分類は、非常に限定されたラベル付きサンプルをベースクラスから新しいクラスに一般化することを目的としている。
最先端のソリューションは、サンプル間の距離を計算するための良い計量と表現空間を見つけることを含む。
有望な精度性能にもかかわらず、計量ベースのFSC手法の不確実性を効果的にモデル化する方法は依然として課題である。
論文 参考訳(メタデータ) (2022-07-19T03:58:00Z) - Adaptive neighborhood Metric learning [184.95321334661898]
適応的近傍距離距離学習(ANML)という新しい距離距離距離距離距離距離学習アルゴリズムを提案する。
ANMLは線形埋め込みと深層埋め込みの両方を学ぶのに使うことができる。
本手法で提案するemphlog-exp平均関数は,深層学習手法をレビューするための新たな視点を与える。
論文 参考訳(メタデータ) (2022-01-20T17:26:37Z) - Meta-Generating Deep Attentive Metric for Few-shot Classification [53.07108067253006]
本稿では,新しい数ショット学習タスクのための特定のメトリックを生成するための,新しい深度メタジェネレーション手法を提案する。
本研究では,各タスクの識別基準を生成するのに十分なフレキシブルな3層深い注意ネットワークを用いて,メトリクスを構造化する。
特に挑戦的なケースでは、最先端の競合他社よりも驚くほどパフォーマンスが向上しています。
論文 参考訳(メタデータ) (2020-12-03T02:07:43Z) - Rethinking preventing class-collapsing in metric learning with
margin-based losses [81.22825616879936]
メトリクス学習は、視覚的に類似したインスタンスが近接し、異なるインスタンスが分離した埋め込みを求める。
マージンベースの損失は、クラスの全サンプルを埋め込み空間の単一点に投影する傾向がある。
そこで本研究では,各サンプルが最寄りの同一クラスをバッチで選択するように,埋め込み損失の簡易な修正を提案する。
論文 参考訳(メタデータ) (2020-06-09T09:59:25Z) - Boosting Few-Shot Learning With Adaptive Margin Loss [109.03665126222619]
本稿では,数ショット学習問題に対するメートル法に基づくメタラーニング手法の一般化能力を改善するための適応的マージン原理を提案する。
大規模な実験により,提案手法は,現在のメートル法に基づくメタラーニング手法の性能を向上させることができることが示された。
論文 参考訳(メタデータ) (2020-05-28T07:58:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。