Towards Scalable Topological Regularizers
- URL: http://arxiv.org/abs/2501.14641v1
- Date: Fri, 24 Jan 2025 17:02:04 GMT
- Title: Towards Scalable Topological Regularizers
- Authors: Hiu-Tung Wong, Darrick Lee, Hong Yan,
- Abstract summary: Metrics for probability measures, such as Wasserstein and maximum mean discrepancy, are commonly used to quantify the differences between such distributions.
Persistent homology is a tool from topological data analysis which quantifies the multi-scale topological structure of point clouds.
We propose the use of principal persistence measures, based on computing the persistent homology of a large number of small subsamples, as a topological regularizer.
- Score: 6.922812026345242
- License:
- Abstract: Latent space matching, which consists of matching distributions of features in latent space, is a crucial component for tasks such as adversarial attacks and defenses, domain adaptation, and generative modelling. Metrics for probability measures, such as Wasserstein and maximum mean discrepancy, are commonly used to quantify the differences between such distributions. However, these are often costly to compute, or do not appropriately take the geometric and topological features of the distributions into consideration. Persistent homology is a tool from topological data analysis which quantifies the multi-scale topological structure of point clouds, and has recently been used as a topological regularizer in learning tasks. However, computation costs preclude larger scale computations, and discontinuities in the gradient lead to unstable training behavior such as in adversarial tasks. We propose the use of principal persistence measures, based on computing the persistent homology of a large number of small subsamples, as a topological regularizer. We provide a parallelized GPU implementation of this regularizer, and prove that gradients are continuous for smooth densities. Furthermore, we demonstrate the efficacy of this regularizer on shape matching, image generation, and semi-supervised learning tasks, opening the door towards a scalable regularizer for topological features.
Related papers
- Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
Topological correctness plays a critical role in many image segmentation tasks.
Most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy.
We propose a novel, graph-based framework for topologically accurate image segmentation.
arXiv Detail & Related papers (2024-11-05T16:20:14Z) - Topological Generalization Bounds for Discrete-Time Stochastic Optimization Algorithms [15.473123662393169]
Deep neural networks (DNNs) show remarkable generalization properties.
The source of these capabilities remains elusive, defying the established statistical learning theory.
Recent studies have revealed that properties of training trajectories can be indicative of generalization.
arXiv Detail & Related papers (2024-07-11T17:56:03Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Learning Linear Causal Representations from Interventions under General
Nonlinear Mixing [52.66151568785088]
We prove strong identifiability results given unknown single-node interventions without access to the intervention targets.
This is the first instance of causal identifiability from non-paired interventions for deep neural network embeddings.
arXiv Detail & Related papers (2023-06-04T02:32:12Z) - $k$-Means Clustering for Persistent Homology [0.0]
We prove convergence of the $k$-means clustering algorithm on persistence diagram space.
We also establish theoretical properties of the solution to the optimization problem in the Karush--Kuhn--Tucker framework.
arXiv Detail & Related papers (2022-10-18T17:18:51Z) - Robust Topological Inference in the Presence of Outliers [18.6112824677157]
The distance function to a compact set plays a crucial role in the paradigm of topological data analysis.
Despite its stability to perturbations in the Hausdorff distance, persistent homology is highly sensitive to outliers.
We propose a $textitmedian-of-means$ variant of the distance function ($textsfMoM Dist$), and establish its statistical properties.
arXiv Detail & Related papers (2022-06-03T19:45:43Z) - Quantum Persistent Homology [0.9023847175654603]
Persistent homology is a powerful mathematical tool that summarizes useful information about the shape of data.
We develop an efficient quantum computation of persistent Betti numbers, which track topological features of data across different scales.
Our approach employs a persistent Dirac operator whose square yields the persistent Laplacian, and in turn the underlying persistent Betti numbers.
arXiv Detail & Related papers (2022-02-25T20:52:03Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Topological Regularization for Dense Prediction [5.71097144710995]
We develop a form of topological regularization based on persistent homology that can be used in dense prediction tasks with topological descriptions.
We demonstrate that this topological regularization of internal activations leads to improved convergence and test benchmarks on several problems and architectures.
arXiv Detail & Related papers (2021-11-22T04:44:45Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
Local features provide region-to-region rather than point-to-point correspondences.
We propose guidelines for effective use of region-to-region matches in the course of a full model estimation pipeline.
Experiments show that affine solvers can achieve accuracy comparable to point-based solvers at faster run-times.
arXiv Detail & Related papers (2020-07-20T12:07:48Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.