Towards Unified Structured Light Optimization
- URL: http://arxiv.org/abs/2501.14659v1
- Date: Fri, 24 Jan 2025 17:29:17 GMT
- Title: Towards Unified Structured Light Optimization
- Authors: Tinglei Wan, Tonghua Su, Zhongjie Wang,
- Abstract summary: Structured light (SL) 3D reconstruction captures the precise surface shape of objects.
We present a unified framework for SL optimization, adaptable to diverse lighting conditions, object types, and different types of SL.
Key contributions include a novel global matching method for projectors, enabling precise projector-camera alignment with just one projected image.
- Score: 2.4823372746556442
- License:
- Abstract: Structured light (SL) 3D reconstruction captures the precise surface shape of objects, providing high-accuracy 3D data essential for industrial inspection and robotic vision systems. However, current research on optimizing projection patterns in SL 3D reconstruction faces two main limitations: each scene requires separate training of calibration parameters, and optimization is restricted to specific types of SL, which restricts their application range. To tackle these limitations, we present a unified framework for SL optimization, adaptable to diverse lighting conditions, object types, and different types of SL. Our framework quickly determines the optimal projection pattern using only a single projected image. Key contributions include a novel global matching method for projectors, enabling precise projector-camera alignment with just one projected image, and a new projection compensation model with a photometric adjustment module to reduce artifacts from out-of-gamut clipping. Experimental results show our method achieves superior decoding accuracy across various objects, SL patterns, and lighting conditions, significantly outperforming previous methods.
Related papers
- Neural Active Structure-from-Motion in Dark and Textureless Environment [1.3378968838200862]
We propose a simultaneous shape reconstruction and pose estimation technique for structured light (SL) systems.
The proposed method is able to achieve accurate shape reconstruction as well as pose estimation from images where only projected patterns are observed.
arXiv Detail & Related papers (2024-10-20T12:29:01Z) - GS-Phong: Meta-Learned 3D Gaussians for Relightable Novel View Synthesis [63.5925701087252]
We propose a novel method for representing a scene illuminated by a point light using a set of relightable 3D Gaussian points.
Inspired by the Blinn-Phong model, our approach decomposes the scene into ambient, diffuse, and specular components.
To facilitate the decomposition of geometric information independent of lighting conditions, we introduce a novel bilevel optimization-based meta-learning framework.
arXiv Detail & Related papers (2024-05-31T13:48:54Z) - GGRt: Towards Pose-free Generalizable 3D Gaussian Splatting in Real-time [112.32349668385635]
GGRt is a novel approach to generalizable novel view synthesis that alleviates the need for real camera poses.
As the first pose-free generalizable 3D-GS framework, GGRt achieves inference at $ge$ 5 FPS and real-time rendering at $ge$ 100 FPS.
arXiv Detail & Related papers (2024-03-15T09:47:35Z) - Neural Projection Mapping Using Reflectance Fields [11.74757574153076]
We introduce a projector into a neural reflectance field that allows to calibrate the projector and photo realistic light editing.
Our neural field consists of three neural networks, estimating geometry, material, and transmittance.
We believe that neural projection mapping opens up the door to novel and exciting downstream tasks, through the joint optimization of the scene and projection images.
arXiv Detail & Related papers (2023-06-11T05:33:10Z) - Towards Scalable Multi-View Reconstruction of Geometry and Materials [27.660389147094715]
We propose a novel method for joint recovery of camera pose, object geometry and spatially-varying Bidirectional Reflectance Distribution Function (svBRDF) of 3D scenes.
The input are high-resolution RGBD images captured by a mobile, hand-held capture system with point lights for active illumination.
arXiv Detail & Related papers (2023-06-06T15:07:39Z) - Neural Lens Modeling [50.57409162437732]
NeuroLens is a neural lens model for distortion and vignetting that can be used for point projection and ray casting.
It can be used to perform pre-capture calibration using classical calibration targets, and can later be used to perform calibration or refinement during 3D reconstruction.
The model generalizes across many lens types and is trivial to integrate into existing 3D reconstruction and rendering systems.
arXiv Detail & Related papers (2023-04-10T20:09:17Z) - Multi-View Neural Surface Reconstruction with Structured Light [7.709526244898887]
Three-dimensional (3D) object reconstruction based on differentiable rendering (DR) is an active research topic in computer vision.
We introduce active sensing with structured light (SL) into multi-view 3D object reconstruction based on DR to learn the unknown geometry and appearance of arbitrary scenes and camera poses.
Our method realizes high reconstruction accuracy in the textureless region and reduces efforts for camera pose calibration.
arXiv Detail & Related papers (2022-11-22T03:10:46Z) - Progressively-connected Light Field Network for Efficient View Synthesis [69.29043048775802]
We present a Progressively-connected Light Field network (ProLiF) for the novel view synthesis of complex forward-facing scenes.
ProLiF encodes a 4D light field, which allows rendering a large batch of rays in one training step for image- or patch-level losses.
arXiv Detail & Related papers (2022-07-10T13:47:20Z) - Differentiable Rendering with Perturbed Optimizers [85.66675707599782]
Reasoning about 3D scenes from their 2D image projections is one of the core problems in computer vision.
Our work highlights the link between some well-known differentiable formulations and randomly smoothed renderings.
We apply our method to 3D scene reconstruction and demonstrate its advantages on the tasks of 6D pose estimation and 3D mesh reconstruction.
arXiv Detail & Related papers (2021-10-18T08:56:23Z) - SIDER: Single-Image Neural Optimization for Facial Geometric Detail
Recovery [54.64663713249079]
SIDER is a novel photometric optimization method that recovers detailed facial geometry from a single image in an unsupervised manner.
In contrast to prior work, SIDER does not rely on any dataset priors and does not require additional supervision from multiple views, lighting changes or ground truth 3D shape.
arXiv Detail & Related papers (2021-08-11T22:34:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.