Neural-Symbolic Message Passing with Dynamic Pruning
- URL: http://arxiv.org/abs/2501.14661v1
- Date: Fri, 24 Jan 2025 17:30:17 GMT
- Title: Neural-Symbolic Message Passing with Dynamic Pruning
- Authors: Chongzhi Zhang, Junhao Zheng, Zhiping Peng, Qianli Ma,
- Abstract summary: We propose a Neural-Symbolic Message Passing (NSMP) framework based on pre-trained neural link predictors.
By introducing symbolic reasoning and fuzzy logic, NSMP can generalize to arbitrary existential first order logic queries without requiring training.
Compared to this approach, NSMP demonstrates faster inference times across all query types on benchmark datasets.
- Score: 22.485655410582375
- License:
- Abstract: Complex Query Answering (CQA) over incomplete Knowledge Graphs (KGs) is a challenging task. Recently, a line of message-passing-based research has been proposed to solve CQA. However, they perform unsatisfactorily on negative queries and fail to address the noisy messages between variable nodes in the query graph. Moreover, they offer little interpretability and require complex query data and resource-intensive training. In this paper, we propose a Neural-Symbolic Message Passing (NSMP) framework based on pre-trained neural link predictors. By introducing symbolic reasoning and fuzzy logic, NSMP can generalize to arbitrary existential first order logic queries without requiring training while providing interpretable answers. Furthermore, we introduce a dynamic pruning strategy to filter out noisy messages between variable nodes. Experimental results show that NSMP achieves a strong performance. Additionally, through complexity analysis and empirical verification, we demonstrate the superiority of NSMP in inference time over the current state-of-the-art neural-symbolic method. Compared to this approach, NSMP demonstrates faster inference times across all query types on benchmark datasets, with speedup ranging from 2$\times$ to over 150$\times$.
Related papers
- Conditional Logical Message Passing Transformer for Complex Query Answering [22.485655410582375]
We propose a new state-of-the-art neural CQA model, Conditional Logical Message Passing Transformer (CLMPT)
We empirically verified that this approach can reduce computational costs without affecting performance.
Experimental results show that CLMPT is a new state-of-the-art neural CQA model.
arXiv Detail & Related papers (2024-02-20T12:17:01Z) - ReasoningLM: Enabling Structural Subgraph Reasoning in Pre-trained
Language Models for Question Answering over Knowledge Graph [142.42275983201978]
We propose a subgraph-aware self-attention mechanism to imitate the GNN for performing structured reasoning.
We also adopt an adaptation tuning strategy to adapt the model parameters with 20,000 subgraphs with synthesized questions.
Experiments show that ReasoningLM surpasses state-of-the-art models by a large margin, even with fewer updated parameters and less training data.
arXiv Detail & Related papers (2023-12-30T07:18:54Z) - Logical Message Passing Networks with One-hop Inference on Atomic
Formulas [57.47174363091452]
We propose a framework for complex query answering that decomposes the Knowledge Graph embeddings from neural set operators.
On top of the query graph, we propose the Logical Message Passing Neural Network (LMPNN) that connects the local one-hop inferences on atomic formulas to the global logical reasoning.
Our approach yields the new state-of-the-art neural CQA model.
arXiv Detail & Related papers (2023-01-21T02:34:06Z) - Signal Processing for Implicit Neural Representations [80.38097216996164]
Implicit Neural Representations (INRs) encode continuous multi-media data via multi-layer perceptrons.
Existing works manipulate such continuous representations via processing on their discretized instance.
We propose an implicit neural signal processing network, dubbed INSP-Net, via differential operators on INR.
arXiv Detail & Related papers (2022-10-17T06:29:07Z) - Neural-Symbolic Entangled Framework for Complex Query Answering [22.663509971491138]
We propose a Neural and Entangled framework (ENeSy) for complex query answering.
It enables the neural and symbolic reasoning to enhance each other to alleviate the cascading error and KG incompleteness.
ENeSy achieves the SOTA performance on several benchmarks, especially in the setting of the training model only with the link prediction task.
arXiv Detail & Related papers (2022-09-19T06:07:10Z) - Neural-Symbolic Models for Logical Queries on Knowledge Graphs [17.290758383645567]
We propose Graph Neural Network Query Executor (GNN-QE), a neural-symbolic model that enjoys the advantages of both worlds.
GNN-QE decomposes a complex FOL query into relation projections and logical operations over fuzzy sets.
Experiments on 3 datasets show that GNN-QE significantly improves over previous state-of-the-art models in answering FOL queries.
arXiv Detail & Related papers (2022-05-16T18:39:04Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
We propose a simple graph-based network structure called GCHP, which utilizes only graph convolutional layers.
We show that GCHP can significantly reduce training time and the likelihood ratio loss with interarrival time probability assumptions can greatly improve the model performance.
arXiv Detail & Related papers (2021-07-07T16:59:14Z) - Question Answering over Knowledge Bases by Leveraging Semantic Parsing
and Neuro-Symbolic Reasoning [73.00049753292316]
We propose a semantic parsing and reasoning-based Neuro-Symbolic Question Answering(NSQA) system.
NSQA achieves state-of-the-art performance on QALD-9 and LC-QuAD 1.0.
arXiv Detail & Related papers (2020-12-03T05:17:55Z) - Closed Loop Neural-Symbolic Learning via Integrating Neural Perception,
Grammar Parsing, and Symbolic Reasoning [134.77207192945053]
Prior methods learn the neural-symbolic models using reinforcement learning approaches.
We introduce the textbfgrammar model as a textitsymbolic prior to bridge neural perception and symbolic reasoning.
We propose a novel textbfback-search algorithm which mimics the top-down human-like learning procedure to propagate the error.
arXiv Detail & Related papers (2020-06-11T17:42:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.