Data-Juicer 2.0: Cloud-Scale Adaptive Data Processing for Foundation Models
- URL: http://arxiv.org/abs/2501.14755v1
- Date: Mon, 23 Dec 2024 08:29:57 GMT
- Title: Data-Juicer 2.0: Cloud-Scale Adaptive Data Processing for Foundation Models
- Authors: Daoyuan Chen, Yilun Huang, Xuchen Pan, Nana Jiang, Haibin Wang, Ce Ge, Yushuo Chen, Wenhao Zhang, Zhijian Ma, Yilei Zhang, Jun Huang, Wei Lin, Yaliang Li, Bolin Ding, Jingren Zhou,
- Abstract summary: We present Data-Juicer 2.0, a new system offering fruitful data processing capabilities backed by over a hundred operators.<n>The system is publicly available, actively maintained, and broadly adopted in diverse research endeavors, practical applications, and real-world products such as Alibaba Cloud PAI.
- Score: 64.28420991770382
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The burgeoning field of foundation models necessitates advanced data processing mechanisms capable of harnessing vast valuable data with varied types utilized by these models. Nevertheless, the current landscape presents unique challenges that traditional data processing frameworks cannot handle effectively, especially with multimodal intricacies. In response, we present Data-Juicer 2.0, a new system offering fruitful data processing capabilities backed by over a hundred operators spanning various modalities like text, image, audio, and video. With seamless compatibility and dedicated optimization to popular dataset hubs like Hugging Face and computing engines like Ray, Data-Juicer 2.0 enhances its predecessor in both usability, efficiency, and programmability. It features an easily accessible user interface layer that supports decoupled Python interactions, RESTful APIs, and conversational commands. Alongside this, it contains a core runtime layer optimized for adaptive execution and management across different dataset scales, processing demands, and computational environments, while shielding unnecessary system details. Extensive empirical evaluations demonstrate Data-Juicer 2.0's remarkable performance and scalability, highlighting its capability to efficiently process tens of billions of data samples with tens of thousands of CPU cores. The system is publicly available, actively maintained, and broadly adopted in diverse research endeavors, practical applications, and real-world products such as Alibaba Cloud PAI.
Related papers
- AutoMR: A Universal Time Series Motion Recognition Pipeline [11.170663268933676]
We present an end-to-end automated motion recognition (AutoMR) pipeline designed for multimodal datasets.<n>The proposed framework seamlessly integrates data preprocessing, model training, hyperparameter tuning, and evaluation, enabling robust performance across diverse scenarios.
arXiv Detail & Related papers (2025-02-21T05:59:41Z) - Data-Juicer Sandbox: A Feedback-Driven Suite for Multimodal Data-Model Co-development [67.55944651679864]
We present a new sandbox suite tailored for integrated data-model co-development.
This sandbox provides a feedback-driven experimental platform, enabling cost-effective and guided refinement of both data and models.
arXiv Detail & Related papers (2024-07-16T14:40:07Z) - An Integrated Data Processing Framework for Pretraining Foundation Models [57.47845148721817]
Researchers and practitioners often have to manually curate datasets from difference sources.
We propose a data processing framework that integrates a Processing Module and an Analyzing Module.
The proposed framework is easy to use and highly flexible.
arXiv Detail & Related papers (2024-02-26T07:22:51Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - Kubric: A scalable dataset generator [73.78485189435729]
Kubric is a Python framework that interfaces with PyBullet and Blender to generate photo-realistic scenes, with rich annotations, and seamlessly scales to large jobs distributed over thousands of machines.
We demonstrate the effectiveness of Kubric by presenting a series of 13 different generated datasets for tasks ranging from studying 3D NeRF models to optical flow estimation.
arXiv Detail & Related papers (2022-03-07T18:13:59Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Improving the Performance of Fine-Grain Image Classifiers via Generative
Data Augmentation [0.5161531917413706]
We develop Data Augmentation from Proficient Pre-Training of Robust Generative Adrial Networks (DAPPER GAN)
DAPPER GAN is an ML analytics support tool that automatically generates novel views of training images.
We experimentally evaluate this technique on the Stanford Cars dataset, demonstrating improved vehicle make and model classification accuracy.
arXiv Detail & Related papers (2020-08-12T15:29:11Z) - ARDA: Automatic Relational Data Augmentation for Machine Learning [23.570173866941612]
We present system, an end-to-end system that takes as input a dataset and a data repository, and outputs an augmented data set.
Our system has two distinct components: (1) a framework to search and join data with the input data, based on various attributes of the input, and (2) an efficient feature selection algorithm that prunes out noisy or irrelevant features from the resulting join.
arXiv Detail & Related papers (2020-03-21T21:55:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.