論文の概要: Punch Out Model Synthesis: A Stochastic Algorithm for Constraint Based Tiling Generation
- arxiv url: http://arxiv.org/abs/2501.14786v1
- Date: Sun, 05 Jan 2025 21:49:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-02 09:19:38.894466
- Title: Punch Out Model Synthesis: A Stochastic Algorithm for Constraint Based Tiling Generation
- Title(参考訳): パンチアウトモデル合成:制約に基づくタイリング生成のための確率的アルゴリズム
- Authors: Zzyv Zzyzek,
- Abstract要約: Constraint Based Tiling Generation (CBTG)アルゴリズムは、一連のタイルと配置制約からレベル実現を自動的に生成するのに役立つ。
Punch Out Model Synthesis (POMS, Constraint Based Tiling Generation algorithm) を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: As an artistic aid in tiled level design, Constraint Based Tiling Generation (CBTG) algorithms can help to automatically create level realizations from a set of tiles and placement constraints. Merrell's Modify in Blocks Model Synthesis (MMS) and Gumin's Wave Function Collapse (WFC) have been proposed as Constraint Based Tiling Generation (CBTG) algorithms that work well for many scenarios but have limitations in problem size, problem setup and solution biasing. We present Punch Out Model Synthesis (POMS), a Constraint Based Tiling Generation algorithm, that can handle large problem sizes, requires minimal assumptions for setup and can help mitigate solution biasing. POMS attempts to resolve indeterminate grid regions by trying to progressively realize sub-blocks, performing a stochastic boundary erosion on previously resolved regions should sub-block resolution fail. We highlight the results of running a reference implementation on different tile sets and discuss a tile correlation length, implied by the tile constraints, and its role in choosing an appropriate block size to aid POMS in successfully finding grid realizations.
- Abstract(参考訳): タイルレベル設計の芸術的支援として、制約ベースのタイリング生成(CBTG)アルゴリズムは、一連のタイルと配置制約からレベル実現を自動的に生成するのに役立つ。
Merrell's Modify in Blocks Model Synthesis (MMS) と Gumin's Wave Function Collapse (WFC) は、多くのシナリオでうまく機能するが、問題サイズ、問題設定、ソリューションバイアスに制限があるConstraint Based Tiling Generation (CBTG) アルゴリズムとして提案されている。
本稿では,制約に基づくタイリング生成アルゴリズムであるPunch Out Model Synthesis (POMS)を提案する。
POMSは、サブブロックを段階的に実現しようとすることで、不確定なグリッド領域を解決しようとするが、事前に解決された領域における確率的境界侵食は、サブブロックの解決に失敗する。
我々は,異なるタイル集合に対する参照実装の実行結果を強調し,タイル制約によって示唆されるタイル相関長と,グリッドの実現を成功させるために,POMSが適切なブロックサイズを選択する役割について論じる。
関連論文リスト
- Learning to Explore with Lagrangians for Bandits under Unknown Linear Constraints [8.784438985280094]
線形制約が未知の多腕バンディットにおける純粋探索として問題を研究する。
まず、制約下での純粋な探索のために、サンプルの複雑さを低く抑えたラグランジアン緩和を提案する。
第二に、ラグランジアンの下界と凸の性質を利用して、トラック・アンド・ストップとガミファイド・エクスプローラー(LATSとLAGEX)の2つの計算効率の良い拡張を提案する。
論文 参考訳(メタデータ) (2024-10-24T15:26:14Z) - A column generation algorithm with dynamic constraint aggregation for minimum sum-of-squares clustering [0.30693357740321775]
最小2乗クラスタリング問題(MSSC)は、$n$のデータポイントを$k$クラスタに分割する問題を指す。
カラム生成(CG)と動的制約集約(DCA)を組み合わせた大規模MSSCインスタンスの効率的な解法を提案する。
論文 参考訳(メタデータ) (2024-10-08T16:51:28Z) - Robust Stochastically-Descending Unrolled Networks [85.6993263983062]
Deep Unrolling(ディープ・アンローリング)は、トレーニング可能なニューラルネットワークの層に切り捨てられた反復アルゴリズムをアンロールする、新たな学習最適化手法である。
アンロールネットワークの収束保証と一般化性は、いまだにオープンな理論上の問題であることを示す。
提案した制約の下で訓練されたアンロールアーキテクチャを2つの異なるアプリケーションで数値的に評価する。
論文 参考訳(メタデータ) (2023-12-25T18:51:23Z) - Compositional Diffusion-Based Continuous Constraint Solvers [98.1702285470628]
本稿では,ロボット推論と計画における連続的制約満足度問題(CCSP)の解法について紹介する。
対照的に、構成拡散連続制約解法(Diffusion-CCSP)は、CCSPに対する大域的な解を導出する。
論文 参考訳(メタデータ) (2023-09-02T15:20:36Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
ポートフォリオ最適化からロジスティクスに至るまで、制約付き最適化問題は業界に多い。
これらの問題の解決における主要な障害の1つは、有効な検索空間を制限する非自明なハード制約の存在である。
本研究では、Ax=bという形の任意の整数値等式制約をU(1)対称ネットワーク(TN)に直接エンコードし、それらの適用性を量子に着想を得た生成モデルとして活用する。
論文 参考訳(メタデータ) (2022-11-16T18:59:54Z) - Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned
Edge Learning Over Broadband Channels [69.18343801164741]
パーティショニングエッジ学習(PARTEL)は、無線ネットワークにおいてよく知られた分散学習手法であるパラメータサーバトレーニングを実装している。
本稿では、いくつかの補助変数を導入してParticleELを用いてトレーニングできるディープニューラルネットワーク(DNN)モデルについて考察する。
論文 参考訳(メタデータ) (2020-10-08T15:27:50Z) - Stochastic Bundle Adjustment for Efficient and Scalable 3D
Reconstruction [43.736296034673124]
カメラ数に比例したReduced Camera System(RCS)を解く際のボトルネックによって、Levenberg-Marquardt (LM)アルゴリズムのような現在のバンドル調整ソルバが制限される。
本稿では,CS を LM のほぼ内部で分解し,効率と拡張性を向上するバンドル調整アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-02T10:26:09Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
構造凸最適化問題に対する条件勾配に基づく2つの新しい解法を提案する。
私たちのフレームワークの最も重要な特徴は、各イテレーションで制約のサブセットだけが処理されることです。
提案アルゴリズムは, 条件勾配のステップとともに, 分散の低減と平滑化に頼り, 厳密な収束保証を伴っている。
論文 参考訳(メタデータ) (2020-07-07T21:26:35Z) - An Integer Linear Programming Framework for Mining Constraints from Data [81.60135973848125]
データから制約をマイニングするための一般的なフレームワークを提案する。
特に、構造化された出力予測の推論を整数線形プログラミング(ILP)問題とみなす。
提案手法は,9×9のスドクパズルの解法を学習し,基礎となるルールを提供することなく,例からツリー問題を最小限に分散させることが可能であることを示す。
論文 参考訳(メタデータ) (2020-06-18T20:09:53Z) - Submodular Bandit Problem Under Multiple Constraints [8.100450025624443]
我々は、$l$knapsacksと$k$-system制約の交わりの下で、部分モジュラーバンディット問題を導入する。
この問題を解決するために,標準あるいは修正された高信頼境界に適応的に焦点をあてる非グレーディアルゴリズムを提案する。
近似比が高速アルゴリズムのそれと一致するような近似後悔の確率の高い上限を提供する。
論文 参考訳(メタデータ) (2020-06-01T01:28:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。