On the locality bias and results in the Long Range Arena
- URL: http://arxiv.org/abs/2501.14850v1
- Date: Fri, 24 Jan 2025 15:34:50 GMT
- Title: On the locality bias and results in the Long Range Arena
- Authors: Pablo Miralles-González, Javier Huertas-Tato, Alejandro Martín, David Camacho,
- Abstract summary: The Long Range Arena benchmark was designed to evaluate the performance of Transformer improvements.
A new series of architectures such as State Space Models (SSMs) gained some traction, greatly outperforming Transformers in the LRA.
We show that while the LRA is a benchmark for long-range dependency modeling, in reality most of the performance comes from short-range dependencies.
- Score: 49.15148871877941
- License:
- Abstract: The Long Range Arena (LRA) benchmark was designed to evaluate the performance of Transformer improvements and alternatives in long-range dependency modeling tasks. The Transformer and its main variants performed poorly on this benchmark, and a new series of architectures such as State Space Models (SSMs) gained some traction, greatly outperforming Transformers in the LRA. Recent work has shown that with a denoising pre-training phase, Transformers can achieve competitive results in the LRA with these new architectures. In this work, we discuss and explain the superiority of architectures such as MEGA and SSMs in the Long Range Arena, as well as the recent improvement in the results of Transformers, pointing to the positional and local nature of the tasks. We show that while the LRA is a benchmark for long-range dependency modeling, in reality most of the performance comes from short-range dependencies. Using training techniques to mitigate data inefficiency, Transformers are able to reach state-of-the-art performance with proper positional encoding. In addition, with the same techniques, we were able to remove all restrictions from SSM convolutional kernels and learn fully parameterized convolutions without decreasing performance, suggesting that the design choices behind SSMs simply added inductive biases and learning efficiency for these particular tasks. Our insights indicate that LRA results should be interpreted with caution and call for a redesign of the benchmark.
Related papers
- The Expressive Capacity of State Space Models: A Formal Language Perspective [0.8948475969696075]
recurrent models based on linear state space models (SSMs) have shown promising performance in language modeling (LM), competititve with transformers.
We present a comprehensive theoretical study of the capacity of such SSMs as it compares to that of transformers and traditional RNNs.
arXiv Detail & Related papers (2024-05-27T17:46:57Z) - Repeat After Me: Transformers are Better than State Space Models at Copying [53.47717661441142]
We show that while generalized state space models are promising in terms of inference-time efficiency, they are limited compared to transformer models on tasks that require copying from the input context.
arXiv Detail & Related papers (2024-02-01T21:44:11Z) - On the Long Range Abilities of Transformers [69.3021852589771]
We demonstrate that minimal modifications to the transformer architecture can significantly enhance performance on the Long Range Arena benchmark.
We identify that two key principles for long-range tasks are (i.e. incorporating an inductive bias towards smoothness, and (ii.e.) locality.
As we show, integrating these ideas into the attention mechanism improves results with a negligible amount of additional computation and without any additional trainable parameters.
arXiv Detail & Related papers (2023-11-28T09:21:48Z) - Exploring the Performance and Efficiency of Transformer Models for NLP
on Mobile Devices [3.809702129519641]
New deep neural network (DNN) architectures and approaches are emerging every few years, driving the field's advancement.
Transformers are a relatively new model family that has achieved new levels of accuracy across AI tasks, but poses significant computational challenges.
This work aims to make steps towards bridging this gap by examining the current state of Transformers' on-device execution.
arXiv Detail & Related papers (2023-06-20T10:15:01Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Optimizing Non-Autoregressive Transformers with Contrastive Learning [74.46714706658517]
Non-autoregressive Transformers (NATs) reduce the inference latency of Autoregressive Transformers (ATs) by predicting words all at once rather than in sequential order.
In this paper, we propose to ease the difficulty of modality learning via sampling from the model distribution instead of the data distribution.
arXiv Detail & Related papers (2023-05-23T04:20:13Z) - Full Stack Optimization of Transformer Inference: a Survey [58.55475772110702]
Transformer models achieve superior accuracy across a wide range of applications.
The amount of compute and bandwidth required for inference of recent Transformer models is growing at a significant rate.
There has been an increased focus on making Transformer models more efficient.
arXiv Detail & Related papers (2023-02-27T18:18:13Z) - Robust representations of oil wells' intervals via sparse attention
mechanism [2.604557228169423]
We introduce the class of efficient Transformers named Regularized Transformers (Reguformers)
The focus in our experiments is on oil&gas data, namely, well logs.
To evaluate our models for such problems, we work with an industry-scale open dataset consisting of well logs of more than 20 wells.
arXiv Detail & Related papers (2022-12-29T09:56:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.